My Project
Data Structures | Functions | Variables
ideals.cc File Reference
#include "kernel/mod2.h"
#include "misc/options.h"
#include "misc/intvec.h"
#include "coeffs/coeffs.h"
#include "coeffs/numbers.h"
#include "polys/monomials/ring.h"
#include "polys/matpol.h"
#include "polys/weight.h"
#include "polys/sparsmat.h"
#include "polys/prCopy.h"
#include "polys/nc/nc.h"
#include "kernel/ideals.h"
#include "kernel/polys.h"
#include "kernel/GBEngine/kstd1.h"
#include "kernel/GBEngine/kutil.h"
#include "kernel/GBEngine/tgb.h"
#include "kernel/GBEngine/syz.h"
#include "Singular/ipshell.h"
#include "Singular/ipid.h"
#include "polys/clapsing.h"

Go to the source code of this file.

Data Structures

struct  poly_sort
 

Functions

ideal idMinBase (ideal h1)
 
static ideal idSectWithElim (ideal h1, ideal h2, GbVariant alg)
 
static ideal idGroebner (ideal temp, int syzComp, GbVariant alg, intvec *hilb=NULL, intvec *w=NULL, tHomog hom=testHomog)
 
ideal idSect (ideal h1, ideal h2, GbVariant alg)
 
ideal idMultSect (resolvente arg, int length, GbVariant alg)
 
static ideal idPrepare (ideal h1, ideal h11, tHomog hom, int syzcomp, intvec **w, GbVariant alg)
 
ideal idExtractG_T_S (ideal s_h3, matrix *T, ideal *S, long syzComp, int h1_size, BOOLEAN inputIsIdeal, const ring oring, const ring sring)
 
ideal idSyzygies (ideal h1, tHomog h, intvec **w, BOOLEAN setSyzComp, BOOLEAN setRegularity, int *deg, GbVariant alg)
 
ideal idLiftStd (ideal h1, matrix *T, tHomog hi, ideal *S, GbVariant alg, ideal h11)
 
static void idPrepareStd (ideal s_temp, int k)
 
static void idLift_setUnit (int e_mod, matrix *unit)
 
ideal idLift (ideal mod, ideal submod, ideal *rest, BOOLEAN goodShape, BOOLEAN isSB, BOOLEAN divide, matrix *unit, GbVariant alg)
 
void idLiftW (ideal P, ideal Q, int n, matrix &T, ideal &R, int *w)
 
static ideal idInitializeQuot (ideal h1, ideal h2, BOOLEAN h1IsStb, BOOLEAN *addOnlyOne, int *kkmax)
 
ideal idQuot (ideal h1, ideal h2, BOOLEAN h1IsStb, BOOLEAN resultIsIdeal)
 
ideal idElimination (ideal h1, poly delVar, intvec *hilb, GbVariant alg)
 
ideal idMinors (matrix a, int ar, ideal R)
 compute all ar-minors of the matrix a the caller of mpRecMin the elements of the result are not in R (if R!=NULL) More...
 
BOOLEAN idIsSubModule (ideal id1, ideal id2)
 
BOOLEAN idTestHomModule (ideal m, ideal Q, intvec *w)
 
ideal idSeries (int n, ideal M, matrix U, intvec *w)
 
matrix idDiff (matrix i, int k)
 
matrix idDiffOp (ideal I, ideal J, BOOLEAN multiply)
 
ideal idModuloLP (ideal h2, ideal h1, tHomog, intvec **w, matrix *T, GbVariant alg)
 
ideal idModulo (ideal h2, ideal h1, tHomog hom, intvec **w, matrix *T, GbVariant alg)
 
ideal idCreateSpecialKbase (ideal kBase, intvec **convert)
 
int idIndexOfKBase (poly monom, ideal kbase)
 
poly idDecompose (poly monom, poly how, ideal kbase, int *pos)
 
matrix idCoeffOfKBase (ideal arg, ideal kbase, poly how)
 
static void idDeleteComps (ideal arg, int *red_comp, int del)
 
ideal idMinEmbedding (ideal arg, BOOLEAN inPlace, intvec **w)
 
poly id_GCD (poly f, poly g, const ring r)
 
ideal id_Farey (ideal x, number N, const ring r)
 
void idKeepFirstK (ideal id, const int k)
 keeps the first k (>= 1) entries of the given ideal (Note that the kept polynomials may be zero.) More...
 
int pCompare_qsort (const void *a, const void *b)
 
void idSort_qsort (poly_sort *id_sort, int idsize)
 
void idDelEquals (ideal id)
 
static BOOLEAN id_sat_vars_sp (kStrategy strat)
 
ideal id_Satstd (const ideal I, ideal J, const ring r)
 
GbVariant syGetAlgorithm (char *n, const ring r, const ideal)
 

Variables

STATIC_VAR int * id_satstdSaturatingVariables =NULL
 

Data Structure Documentation

◆ poly_sort

struct poly_sort

Definition at line 2920 of file ideals.cc.

Data Fields
int index
poly p

Function Documentation

◆ id_Farey()

ideal id_Farey ( ideal  x,
number  N,
const ring  r 
)

Definition at line 2832 of file ideals.cc.

2833 {
2834  int cnt=IDELEMS(x)*x->nrows;
2835  ideal result=idInit(cnt,x->rank);
2836  result->nrows=x->nrows; // for lifting matrices
2837  result->ncols=x->ncols; // for lifting matrices
2838 
2839  int i;
2840  for(i=cnt-1;i>=0;i--)
2841  {
2842  result->m[i]=p_Farey(x->m[i],N,r);
2843  }
2844  return result;
2845 }
const CanonicalForm CFMap CFMap & N
Definition: cfEzgcd.cc:56
int i
Definition: cfEzgcd.cc:132
Variable x
Definition: cfModGcd.cc:4084
return result
Definition: facAbsBiFact.cc:75
poly p_Farey(poly p, number N, const ring r)
Definition: p_polys.cc:54
ideal idInit(int idsize, int rank)
initialise an ideal / module
Definition: simpleideals.cc:35
#define IDELEMS(i)
Definition: simpleideals.h:23

◆ id_GCD()

poly id_GCD ( poly  f,
poly  g,
const ring  r 
)

Definition at line 2729 of file ideals.cc.

2730 {
2731  ideal I=idInit(2,1); I->m[0]=f; I->m[1]=g;
2732  intvec *w = NULL;
2733 
2734  ring save_r = currRing;
2735  rChangeCurrRing(r);
2736  ideal S=idSyzygies(I,testHomog,&w);
2737  rChangeCurrRing(save_r);
2738 
2739  if (w!=NULL) delete w;
2740  poly gg=p_TakeOutComp(&(S->m[0]), 2, r);
2741  id_Delete(&S, r);
2742  poly gcd_p=singclap_pdivide(f,gg, r);
2743  p_Delete(&gg, r);
2744 
2745  return gcd_p;
2746 }
g
Definition: cfModGcd.cc:4092
FILE * f
Definition: checklibs.c:9
poly singclap_pdivide(poly f, poly g, const ring r)
Definition: clapsing.cc:590
Definition: intvec.h:23
const CanonicalForm & w
Definition: facAbsFact.cc:51
ideal idSyzygies(ideal h1, tHomog h, intvec **w, BOOLEAN setSyzComp, BOOLEAN setRegularity, int *deg, GbVariant alg)
Definition: ideals.cc:830
void p_TakeOutComp(poly *p, long comp, poly *q, int *lq, const ring r)
Definition: p_polys.cc:3565
#define NULL
Definition: omList.c:12
static void p_Delete(poly *p, const ring r)
Definition: p_polys.h:861
void rChangeCurrRing(ring r)
Definition: polys.cc:15
VAR ring currRing
Widely used global variable which specifies the current polynomial ring for Singular interpreter and ...
Definition: polys.cc:13
void id_Delete(ideal *h, ring r)
deletes an ideal/module/matrix
@ testHomog
Definition: structs.h:43

◆ id_sat_vars_sp()

static BOOLEAN id_sat_vars_sp ( kStrategy  strat)
static

Definition at line 2979 of file ideals.cc.

2980 {
2981  BOOLEAN b = FALSE; // set b to TRUE, if spoly was changed,
2982  // let it remain FALSE otherwise
2983  if (strat->P.t_p==NULL)
2984  {
2985  poly p=strat->P.p;
2986 
2987  // iterate over all terms of p and
2988  // compute the minimum mm of all exponent vectors
2989  int *mm=(int*)omAlloc((1+rVar(currRing))*sizeof(int));
2990  int *m0=(int*)omAlloc0((1+rVar(currRing))*sizeof(int));
2991  p_GetExpV(p,mm,currRing);
2992  bool nonTrivialSaturationToBeDone=true;
2993  for (p=pNext(p); p!=NULL; pIter(p))
2994  {
2995  nonTrivialSaturationToBeDone=false;
2996  p_GetExpV(p,m0,currRing);
2997  for (int i=rVar(currRing); i>0; i--)
2998  {
3000  {
3001  mm[i]=si_min(mm[i],m0[i]);
3002  if (mm[i]>0) nonTrivialSaturationToBeDone=true;
3003  }
3004  else mm[i]=0;
3005  }
3006  // abort if the minimum is zero in each component
3007  if (!nonTrivialSaturationToBeDone) break;
3008  }
3009  if (nonTrivialSaturationToBeDone)
3010  {
3011  // std::cout << "simplifying!" << std::endl;
3012  if (TEST_OPT_PROT) { PrintS("S"); mflush(); }
3013  p=p_Copy(strat->P.p,currRing);
3014  //pWrite(p);
3015  // for (int i=rVar(currRing); i>0; i--)
3016  // if (mm[i]!=0) Print("x_%d:%d ",i,mm[i]);
3017  //PrintLn();
3018  strat->P.Init(currRing);
3019  //memset(&strat->P,0,sizeof(strat->P));
3020  strat->P.tailRing = strat->tailRing;
3021  strat->P.p=p;
3022  while(p!=NULL)
3023  {
3024  for (int i=rVar(currRing); i>0; i--)
3025  {
3026  p_SubExp(p,i,mm[i],currRing);
3027  }
3028  p_Setm(p,currRing);
3029  pIter(p);
3030  }
3031  b = TRUE;
3032  }
3033  omFree(mm);
3034  omFree(m0);
3035  }
3036  else
3037  {
3038  poly p=strat->P.t_p;
3039 
3040  // iterate over all terms of p and
3041  // compute the minimum mm of all exponent vectors
3042  int *mm=(int*)omAlloc((1+rVar(currRing))*sizeof(int));
3043  int *m0=(int*)omAlloc0((1+rVar(currRing))*sizeof(int));
3044  p_GetExpV(p,mm,strat->tailRing);
3045  bool nonTrivialSaturationToBeDone=true;
3046  for (p = pNext(p); p!=NULL; pIter(p))
3047  {
3048  nonTrivialSaturationToBeDone=false;
3049  p_GetExpV(p,m0,strat->tailRing);
3050  for(int i=rVar(currRing); i>0; i--)
3051  {
3053  {
3054  mm[i]=si_min(mm[i],m0[i]);
3055  if (mm[i]>0) nonTrivialSaturationToBeDone = true;
3056  }
3057  else mm[i]=0;
3058  }
3059  // abort if the minimum is zero in each component
3060  if (!nonTrivialSaturationToBeDone) break;
3061  }
3062  if (nonTrivialSaturationToBeDone)
3063  {
3064  if (TEST_OPT_PROT) { PrintS("S"); mflush(); }
3065  p=p_Copy(strat->P.t_p,strat->tailRing);
3066  //p_Write(p,strat->tailRing);
3067  // for (int i=rVar(currRing); i>0; i--)
3068  // if (mm[i]!=0) Print("x_%d:%d ",i,mm[i]);
3069  //PrintLn();
3070  strat->P.Init(currRing);
3071  //memset(&strat->P,0,sizeof(strat->P));
3072  strat->P.tailRing = strat->tailRing;
3073  strat->P.t_p=p;
3074  while(p!=NULL)
3075  {
3076  for(int i=rVar(currRing); i>0; i--)
3077  {
3078  p_SubExp(p,i,mm[i],strat->tailRing);
3079  }
3080  p_Setm(p,strat->tailRing);
3081  pIter(p);
3082  }
3083  strat->P.GetP();
3084  b = TRUE;
3085  }
3086  omFree(mm);
3087  omFree(m0);
3088  }
3089  return b; // return TRUE if sp was changed, FALSE if not
3090 }
int BOOLEAN
Definition: auxiliary.h:87
#define TRUE
Definition: auxiliary.h:100
#define FALSE
Definition: auxiliary.h:96
static int si_min(const int a, const int b)
Definition: auxiliary.h:125
int p
Definition: cfModGcd.cc:4080
CanonicalForm b
Definition: cfModGcd.cc:4105
ring tailRing
Definition: kutil.h:342
LObject P
Definition: kutil.h:299
STATIC_VAR int * id_satstdSaturatingVariables
Definition: ideals.cc:2977
#define pIter(p)
Definition: monomials.h:37
#define pNext(p)
Definition: monomials.h:36
#define omAlloc(size)
Definition: omAllocDecl.h:210
#define omFree(addr)
Definition: omAllocDecl.h:261
#define omAlloc0(size)
Definition: omAllocDecl.h:211
#define TEST_OPT_PROT
Definition: options.h:102
static long p_SubExp(poly p, int v, long ee, ring r)
Definition: p_polys.h:613
static void p_Setm(poly p, const ring r)
Definition: p_polys.h:233
static void p_GetExpV(poly p, int *ev, const ring r)
Definition: p_polys.h:1480
static poly p_Copy(poly p, const ring r)
returns a copy of p
Definition: p_polys.h:812
void PrintS(const char *s)
Definition: reporter.cc:284
#define mflush()
Definition: reporter.h:58
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition: ring.h:597

◆ id_Satstd()

ideal id_Satstd ( const ideal  I,
ideal  J,
const ring  r 
)

Definition at line 3092 of file ideals.cc.

3093 {
3094  ring save=currRing;
3095  if (currRing!=r) rChangeCurrRing(r);
3096  idSkipZeroes(J);
3097  id_satstdSaturatingVariables=(int*)omAlloc0((1+rVar(currRing))*sizeof(int));
3098  int k=IDELEMS(J);
3099  if (k>1)
3100  {
3101  for (int i=0; i<k; i++)
3102  {
3103  poly x = J->m[i];
3104  int li = p_Var(x,r);
3105  if (li>0)
3107  else
3108  {
3109  if (currRing!=save) rChangeCurrRing(save);
3110  WerrorS("ideal generators must be variables");
3111  return NULL;
3112  }
3113  }
3114  }
3115  else
3116  {
3117  poly x = J->m[0];
3118  for (int i=1; i<=r->N; i++)
3119  {
3120  int li = p_GetExp(x,i,r);
3121  if (li==1)
3123  else if (li>1)
3124  {
3125  if (currRing!=save) rChangeCurrRing(save);
3126  Werror("exponent(x(%d)^%d) must be 0 or 1",i,li);
3127  return NULL;
3128  }
3129  }
3130  }
3131  ideal res=kStd(I,r->qideal,testHomog,NULL,NULL,0,0,NULL,id_sat_vars_sp);
3134  if (currRing!=save) rChangeCurrRing(save);
3135  return res;
3136 }
int k
Definition: cfEzgcd.cc:99
CanonicalForm res
Definition: facAbsFact.cc:60
void WerrorS(const char *s)
Definition: feFopen.cc:24
static BOOLEAN id_sat_vars_sp(kStrategy strat)
Definition: ideals.cc:2979
ideal kStd(ideal F, ideal Q, tHomog h, intvec **w, intvec *hilb, int syzComp, int newIdeal, intvec *vw, s_poly_proc_t sp)
Definition: kstd1.cc:2419
#define omFreeSize(addr, size)
Definition: omAllocDecl.h:260
int p_Var(poly m, const ring r)
Definition: p_polys.cc:4682
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent @Note: the integer VarOffset encodes:
Definition: p_polys.h:469
void Werror(const char *fmt,...)
Definition: reporter.cc:189
void idSkipZeroes(ideal ide)
gives an ideal/module the minimal possible size

◆ idCoeffOfKBase()

matrix idCoeffOfKBase ( ideal  arg,
ideal  kbase,
poly  how 
)

Definition at line 2605 of file ideals.cc.

2606 {
2607  matrix result;
2608  ideal tempKbase;
2609  poly p,q;
2610  intvec * convert;
2611  int i=IDELEMS(kbase),j=IDELEMS(arg),k,pos;
2612 #if 0
2613  while ((i>0) && (kbase->m[i-1]==NULL)) i--;
2614  if (idIs0(arg))
2615  return mpNew(i,1);
2616  while ((j>0) && (arg->m[j-1]==NULL)) j--;
2617  result = mpNew(i,j);
2618 #else
2619  result = mpNew(i, j);
2620  while ((j>0) && (arg->m[j-1]==NULL)) j--;
2621 #endif
2622 
2623  tempKbase = idCreateSpecialKbase(kbase,&convert);
2624  for (k=0;k<j;k++)
2625  {
2626  p = arg->m[k];
2627  while (p!=NULL)
2628  {
2629  q = idDecompose(p,how,tempKbase,&pos);
2630  if (pos>=0)
2631  {
2632  MATELEM(result,(*convert)[pos],k+1) =
2633  pAdd(MATELEM(result,(*convert)[pos],k+1),q);
2634  }
2635  else
2636  p_Delete(&q,currRing);
2637  pIter(p);
2638  }
2639  }
2640  idDelete(&tempKbase);
2641  return result;
2642 }
int j
Definition: facHensel.cc:110
ideal idCreateSpecialKbase(ideal kBase, intvec **convert)
Definition: ideals.cc:2519
poly idDecompose(poly monom, poly how, ideal kbase, int *pos)
Definition: ideals.cc:2573
#define idDelete(H)
delete an ideal
Definition: ideals.h:29
BOOLEAN idIs0(ideal h)
returns true if h is the zero ideal
matrix mpNew(int r, int c)
create a r x c zero-matrix
Definition: matpol.cc:37
#define MATELEM(mat, i, j)
1-based access to matrix
Definition: matpol.h:29
#define pAdd(p, q)
Definition: polys.h:203

◆ idCreateSpecialKbase()

ideal idCreateSpecialKbase ( ideal  kBase,
intvec **  convert 
)

Definition at line 2519 of file ideals.cc.

2520 {
2521  int i;
2522  ideal result;
2523 
2524  if (idIs0(kBase)) return NULL;
2525  result = idInit(IDELEMS(kBase),kBase->rank);
2526  *convert = idSort(kBase,FALSE);
2527  for (i=0;i<(*convert)->length();i++)
2528  {
2529  result->m[i] = pCopy(kBase->m[(**convert)[i]-1]);
2530  }
2531  return result;
2532 }
static intvec * idSort(ideal id, BOOLEAN nolex=TRUE)
Definition: ideals.h:184
#define pCopy(p)
return a copy of the poly
Definition: polys.h:185

◆ idDecompose()

poly idDecompose ( poly  monom,
poly  how,
ideal  kbase,
int *  pos 
)

Definition at line 2573 of file ideals.cc.

2574 {
2575  int i;
2576  poly coeff=pOne(), base=pOne();
2577 
2578  for (i=1;i<=(currRing->N);i++)
2579  {
2580  if (pGetExp(how,i)>0)
2581  {
2582  pSetExp(base,i,pGetExp(monom,i));
2583  }
2584  else
2585  {
2586  pSetExp(coeff,i,pGetExp(monom,i));
2587  }
2588  }
2589  pSetComp(base,pGetComp(monom));
2590  pSetm(base);
2591  pSetCoeff(coeff,nCopy(pGetCoeff(monom)));
2592  pSetm(coeff);
2593  *pos = idIndexOfKBase(base,kbase);
2594  if (*pos<0)
2595  p_Delete(&coeff,currRing);
2597  return coeff;
2598 }
int idIndexOfKBase(poly monom, ideal kbase)
Definition: ideals.cc:2537
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy
Definition: monomials.h:44
char N base
Definition: ValueTraits.h:144
#define nCopy(n)
Definition: numbers.h:15
#define pSetm(p)
Definition: polys.h:271
#define pGetComp(p)
Component.
Definition: polys.h:37
#define pSetCoeff(p, n)
deletes old coeff before setting the new one
Definition: polys.h:31
#define pSetComp(p, v)
Definition: polys.h:38
#define pGetExp(p, i)
Exponent.
Definition: polys.h:41
#define pSetExp(p, i, v)
Definition: polys.h:42
#define pOne()
Definition: polys.h:315

◆ idDelEquals()

void idDelEquals ( ideal  id)

Definition at line 2940 of file ideals.cc.

2941 {
2942  int idsize = IDELEMS(id);
2943  poly_sort *id_sort = (poly_sort *)omAlloc0(idsize*sizeof(poly_sort));
2944  for (int i = 0; i < idsize; i++)
2945  {
2946  id_sort[i].p = id->m[i];
2947  id_sort[i].index = i;
2948  }
2949  idSort_qsort(id_sort, idsize);
2950  int index, index_i, index_j;
2951  int i = 0;
2952  for (int j = 1; j < idsize; j++)
2953  {
2954  if (id_sort[i].p != NULL && pEqualPolys(id_sort[i].p, id_sort[j].p))
2955  {
2956  index_i = id_sort[i].index;
2957  index_j = id_sort[j].index;
2958  if (index_j > index_i)
2959  {
2960  index = index_j;
2961  }
2962  else
2963  {
2964  index = index_i;
2965  i = j;
2966  }
2967  pDelete(&id->m[index]);
2968  }
2969  else
2970  {
2971  i = j;
2972  }
2973  }
2974  omFreeSize((ADDRESS)(id_sort), idsize*sizeof(poly_sort));
2975 }
void * ADDRESS
Definition: auxiliary.h:119
int index
Definition: ideals.cc:2923
poly p
Definition: ideals.cc:2922
void idSort_qsort(poly_sort *id_sort, int idsize)
Definition: ideals.cc:2931
static int index(p_Length length, p_Ord ord)
Definition: p_Procs_Impl.h:592
#define pDelete(p_ptr)
Definition: polys.h:186
#define pEqualPolys(p1, p2)
Definition: polys.h:400

◆ idDeleteComps()

static void idDeleteComps ( ideal  arg,
int *  red_comp,
int  del 
)
static

Definition at line 2644 of file ideals.cc.

2646 {
2647  int i,j;
2648  poly p;
2649 
2650  for (i=IDELEMS(arg)-1;i>=0;i--)
2651  {
2652  p = arg->m[i];
2653  while (p!=NULL)
2654  {
2655  j = pGetComp(p);
2656  if (red_comp[j]!=j)
2657  {
2658  pSetComp(p,red_comp[j]);
2659  pSetmComp(p);
2660  }
2661  pIter(p);
2662  }
2663  }
2664  (arg->rank) -= del;
2665 }
#define pSetmComp(p)
TODO:
Definition: polys.h:273

◆ idDiff()

matrix idDiff ( matrix  i,
int  k 
)

Definition at line 2122 of file ideals.cc.

2123 {
2124  int e=MATCOLS(i)*MATROWS(i);
2125  matrix r=mpNew(MATROWS(i),MATCOLS(i));
2126  r->rank=i->rank;
2127  int j;
2128  for(j=0; j<e; j++)
2129  {
2130  r->m[j]=pDiff(i->m[j],k);
2131  }
2132  return r;
2133 }
long rank
Definition: matpol.h:19
poly * m
Definition: matpol.h:18
#define MATROWS(i)
Definition: matpol.h:26
#define MATCOLS(i)
Definition: matpol.h:27
#define pDiff(a, b)
Definition: polys.h:296

◆ idDiffOp()

matrix idDiffOp ( ideal  I,
ideal  J,
BOOLEAN  multiply 
)

Definition at line 2135 of file ideals.cc.

2136 {
2137  matrix r=mpNew(IDELEMS(I),IDELEMS(J));
2138  int i,j;
2139  for(i=0; i<IDELEMS(I); i++)
2140  {
2141  for(j=0; j<IDELEMS(J); j++)
2142  {
2143  MATELEM(r,i+1,j+1)=pDiffOp(I->m[i],J->m[j],multiply);
2144  }
2145  }
2146  return r;
2147 }
#define pDiffOp(a, b, m)
Definition: polys.h:297

◆ idElimination()

ideal idElimination ( ideal  h1,
poly  delVar,
intvec hilb,
GbVariant  alg 
)

Definition at line 1587 of file ideals.cc.

1588 {
1589  int i,j=0,k,l;
1590  ideal h,hh, h3;
1591  rRingOrder_t *ord;
1592  int *block0,*block1;
1593  int ordersize=2;
1594  int **wv;
1595  tHomog hom;
1596  intvec * w;
1597  ring tmpR;
1598  ring origR = currRing;
1599 
1600  if (delVar==NULL)
1601  {
1602  return idCopy(h1);
1603  }
1604  if ((currRing->qideal!=NULL) && rIsPluralRing(origR))
1605  {
1606  WerrorS("cannot eliminate in a qring");
1607  return NULL;
1608  }
1609  if (idIs0(h1)) return idInit(1,h1->rank);
1610 #ifdef HAVE_PLURAL
1611  if (rIsPluralRing(origR))
1612  /* in the NC case, we have to check the admissibility of */
1613  /* the subalgebra to be intersected with */
1614  {
1615  if ((ncRingType(origR) != nc_skew) && (ncRingType(origR) != nc_exterior)) /* in (quasi)-commutative algebras every subalgebra is admissible */
1616  {
1617  if (nc_CheckSubalgebra(delVar,origR))
1618  {
1619  WerrorS("no elimination is possible: subalgebra is not admissible");
1620  return NULL;
1621  }
1622  }
1623  }
1624 #endif
1625  hom=(tHomog)idHomModule(h1,NULL,&w); //sets w to weight vector or NULL
1626  h3=idInit(16,h1->rank);
1627  for (k=0;; k++)
1628  {
1629  if (origR->order[k]!=0) ordersize++;
1630  else break;
1631  }
1632 #if 0
1633  if (rIsPluralRing(origR)) // we have too keep the odering: it may be needed
1634  // for G-algebra
1635  {
1636  for (k=0;k<ordersize-1; k++)
1637  {
1638  block0[k+1] = origR->block0[k];
1639  block1[k+1] = origR->block1[k];
1640  ord[k+1] = origR->order[k];
1641  if (origR->wvhdl[k]!=NULL) wv[k+1] = (int*) omMemDup(origR->wvhdl[k]);
1642  }
1643  }
1644  else
1645  {
1646  block0[1] = 1;
1647  block1[1] = (currRing->N);
1648  if (origR->OrdSgn==1) ord[1] = ringorder_wp;
1649  else ord[1] = ringorder_ws;
1650  wv[1]=(int*)omAlloc0((currRing->N)*sizeof(int));
1651  double wNsqr = (double)2.0 / (double)(currRing->N);
1653  int *x= (int * )omAlloc(2 * ((currRing->N) + 1) * sizeof(int));
1654  int sl=IDELEMS(h1) - 1;
1655  wCall(h1->m, sl, x, wNsqr);
1656  for (sl = (currRing->N); sl!=0; sl--)
1657  wv[1][sl-1] = x[sl + (currRing->N) + 1];
1658  omFreeSize((ADDRESS)x, 2 * ((currRing->N) + 1) * sizeof(int));
1659 
1660  ord[2]=ringorder_C;
1661  ord[3]=0;
1662  }
1663 #else
1664 #endif
1665  if ((hom==TRUE) && (origR->OrdSgn==1) && (!rIsPluralRing(origR)))
1666  {
1667  #if 1
1668  // we change to an ordering:
1669  // aa(1,1,1,...,0,0,0),wp(...),C
1670  // this seems to be better than version 2 below,
1671  // according to Tst/../elimiate_[3568].tat (- 17 %)
1672  ord=(rRingOrder_t*)omAlloc0(4*sizeof(rRingOrder_t));
1673  block0=(int*)omAlloc0(4*sizeof(int));
1674  block1=(int*)omAlloc0(4*sizeof(int));
1675  wv=(int**) omAlloc0(4*sizeof(int**));
1676  block0[0] = block0[1] = 1;
1677  block1[0] = block1[1] = rVar(origR);
1678  wv[0]=(int*)omAlloc0((rVar(origR) + 1)*sizeof(int));
1679  // use this special ordering: like ringorder_a, except that pFDeg, pWeights
1680  // ignore it
1681  ord[0] = ringorder_aa;
1682  for (j=0;j<rVar(origR);j++)
1683  if (pGetExp(delVar,j+1)!=0) wv[0][j]=1;
1684  BOOLEAN wp=FALSE;
1685  for (j=0;j<rVar(origR);j++)
1686  if (p_Weight(j+1,origR)!=1) { wp=TRUE;break; }
1687  if (wp)
1688  {
1689  wv[1]=(int*)omAlloc0((rVar(origR) + 1)*sizeof(int));
1690  for (j=0;j<rVar(origR);j++)
1691  wv[1][j]=p_Weight(j+1,origR);
1692  ord[1] = ringorder_wp;
1693  }
1694  else
1695  ord[1] = ringorder_dp;
1696  #else
1697  // we change to an ordering:
1698  // a(w1,...wn),wp(1,...0.....),C
1699  ord=(int*)omAlloc0(4*sizeof(int));
1700  block0=(int*)omAlloc0(4*sizeof(int));
1701  block1=(int*)omAlloc0(4*sizeof(int));
1702  wv=(int**) omAlloc0(4*sizeof(int**));
1703  block0[0] = block0[1] = 1;
1704  block1[0] = block1[1] = rVar(origR);
1705  wv[0]=(int*)omAlloc0((rVar(origR) + 1)*sizeof(int));
1706  wv[1]=(int*)omAlloc0((rVar(origR) + 1)*sizeof(int));
1707  ord[0] = ringorder_a;
1708  for (j=0;j<rVar(origR);j++)
1709  wv[0][j]=pWeight(j+1,origR);
1710  ord[1] = ringorder_wp;
1711  for (j=0;j<rVar(origR);j++)
1712  if (pGetExp(delVar,j+1)!=0) wv[1][j]=1;
1713  #endif
1714  ord[2] = ringorder_C;
1715  ord[3] = (rRingOrder_t)0;
1716  }
1717  else
1718  {
1719  // we change to an ordering:
1720  // aa(....),orig_ordering
1721  ord=(rRingOrder_t*)omAlloc0(ordersize*sizeof(rRingOrder_t));
1722  block0=(int*)omAlloc0(ordersize*sizeof(int));
1723  block1=(int*)omAlloc0(ordersize*sizeof(int));
1724  wv=(int**) omAlloc0(ordersize*sizeof(int**));
1725  for (k=0;k<ordersize-1; k++)
1726  {
1727  block0[k+1] = origR->block0[k];
1728  block1[k+1] = origR->block1[k];
1729  ord[k+1] = origR->order[k];
1730  if (origR->wvhdl[k]!=NULL) wv[k+1] = (int*) omMemDup(origR->wvhdl[k]);
1731  }
1732  block0[0] = 1;
1733  block1[0] = rVar(origR);
1734  wv[0]=(int*)omAlloc0((rVar(origR) + 1)*sizeof(int));
1735  for (j=0;j<rVar(origR);j++)
1736  if (pGetExp(delVar,j+1)!=0) wv[0][j]=1;
1737  // use this special ordering: like ringorder_a, except that pFDeg, pWeights
1738  // ignore it
1739  ord[0] = ringorder_aa;
1740  }
1741  // fill in tmp ring to get back the data later on
1742  tmpR = rCopy0(origR,FALSE,FALSE); // qring==NULL
1743  //rUnComplete(tmpR);
1744  tmpR->p_Procs=NULL;
1745  tmpR->order = ord;
1746  tmpR->block0 = block0;
1747  tmpR->block1 = block1;
1748  tmpR->wvhdl = wv;
1749  rComplete(tmpR, 1);
1750 
1751 #ifdef HAVE_PLURAL
1752  /* update nc structure on tmpR */
1753  if (rIsPluralRing(origR))
1754  {
1755  if ( nc_rComplete(origR, tmpR, false) ) // no quotient ideal!
1756  {
1757  WerrorS("no elimination is possible: ordering condition is violated");
1758  // cleanup
1759  rDelete(tmpR);
1760  if (w!=NULL)
1761  delete w;
1762  return NULL;
1763  }
1764  }
1765 #endif
1766  // change into the new ring
1767  //pChangeRing((currRing->N),currRing->OrdSgn,ord,block0,block1,wv);
1768  rChangeCurrRing(tmpR);
1769 
1770  //h = idInit(IDELEMS(h1),h1->rank);
1771  // fetch data from the old ring
1772  //for (k=0;k<IDELEMS(h1);k++) h->m[k] = prCopyR( h1->m[k], origR);
1773  h=idrCopyR(h1,origR,currRing);
1774  if (origR->qideal!=NULL)
1775  {
1776  WarnS("eliminate in q-ring: experimental");
1777  ideal q=idrCopyR(origR->qideal,origR,currRing);
1778  ideal s=idSimpleAdd(h,q);
1779  idDelete(&h);
1780  idDelete(&q);
1781  h=s;
1782  }
1783  // compute GB
1784  if ((alg!=GbDefault)
1785  && (alg!=GbGroebner)
1786  && (alg!=GbModstd)
1787  && (alg!=GbSlimgb)
1788  && (alg!=GbSba)
1789  && (alg!=GbStd))
1790  {
1791  WarnS("wrong algorithm for GB");
1792  alg=GbDefault;
1793  }
1794  hh=idGroebner(h,0,alg,hilb);
1795  // go back to the original ring
1796  rChangeCurrRing(origR);
1797  i = IDELEMS(hh)-1;
1798  while ((i >= 0) && (hh->m[i] == NULL)) i--;
1799  j = -1;
1800  // fetch data from temp ring
1801  for (k=0; k<=i; k++)
1802  {
1803  l=(currRing->N);
1804  while ((l>0) && (p_GetExp( hh->m[k],l,tmpR)*pGetExp(delVar,l)==0)) l--;
1805  if (l==0)
1806  {
1807  j++;
1808  if (j >= IDELEMS(h3))
1809  {
1810  pEnlargeSet(&(h3->m),IDELEMS(h3),16);
1811  IDELEMS(h3) += 16;
1812  }
1813  h3->m[j] = prMoveR( hh->m[k], tmpR,origR);
1814  hh->m[k] = NULL;
1815  }
1816  }
1817  id_Delete(&hh, tmpR);
1818  idSkipZeroes(h3);
1819  rDelete(tmpR);
1820  if (w!=NULL)
1821  delete w;
1822  return h3;
1823 }
int l
Definition: cfEzgcd.cc:100
#define WarnS
Definition: emacs.cc:78
const CanonicalForm int s
Definition: facAbsFact.cc:51
static ideal idGroebner(ideal temp, int syzComp, GbVariant alg, intvec *hilb=NULL, intvec *w=NULL, tHomog hom=testHomog)
Definition: ideals.cc:201
@ GbGroebner
Definition: ideals.h:126
@ GbModstd
Definition: ideals.h:127
@ GbSlimgb
Definition: ideals.h:123
@ GbDefault
Definition: ideals.h:120
@ GbStd
Definition: ideals.h:122
@ GbSba
Definition: ideals.h:124
#define idSimpleAdd(A, B)
Definition: ideals.h:42
static BOOLEAN idHomModule(ideal m, ideal Q, intvec **w)
Definition: ideals.h:96
ideal idCopy(ideal A)
Definition: ideals.h:60
STATIC_VAR Poly * h
Definition: janet.cc:971
@ nc_skew
Definition: nc.h:16
@ nc_exterior
Definition: nc.h:21
BOOLEAN nc_CheckSubalgebra(poly PolyVar, ring r)
Definition: old.gring.cc:2568
static nc_type & ncRingType(nc_struct *p)
Definition: nc.h:159
#define omMemDup(s)
Definition: omAllocDecl.h:264
int p_Weight(int i, const ring r)
Definition: p_polys.cc:700
void pEnlargeSet(poly **p, int l, int increment)
Definition: p_polys.cc:3766
#define pWeight(i)
Definition: polys.h:280
poly prMoveR(poly &p, ring src_r, ring dest_r)
Definition: prCopy.cc:89
ideal idrCopyR(ideal id, ring src_r, ring dest_r)
Definition: prCopy.cc:191
BOOLEAN rComplete(ring r, int force)
this needs to be called whenever a new ring is created: new fields in ring are created (like VarOffse...
Definition: ring.cc:3403
BOOLEAN nc_rComplete(const ring src, ring dest, bool bSetupQuotient)
Definition: ring.cc:5657
ring rCopy0(const ring r, BOOLEAN copy_qideal, BOOLEAN copy_ordering)
Definition: ring.cc:1366
void rDelete(ring r)
unconditionally deletes fields in r
Definition: ring.cc:449
static BOOLEAN rIsPluralRing(const ring r)
we must always have this test!
Definition: ring.h:400
rRingOrder_t
order stuff
Definition: ring.h:68
@ ringorder_a
Definition: ring.h:70
@ ringorder_C
Definition: ring.h:73
@ ringorder_dp
Definition: ring.h:78
@ ringorder_aa
for idElimination, like a, except pFDeg, pWeigths ignore it
Definition: ring.h:91
@ ringorder_ws
Definition: ring.h:86
@ ringorder_wp
Definition: ring.h:81
tHomog
Definition: structs.h:40
THREAD_VAR double(* wFunctional)(int *degw, int *lpol, int npol, double *rel, double wx, double wNsqr)
Definition: weight.cc:20
void wCall(poly *s, int sl, int *x, double wNsqr, const ring R)
Definition: weight.cc:108
double wFunctionalBuch(int *degw, int *lpol, int npol, double *rel, double wx, double wNsqr)
Definition: weight0.c:78

◆ idExtractG_T_S()

ideal idExtractG_T_S ( ideal  s_h3,
matrix T,
ideal *  S,
long  syzComp,
int  h1_size,
BOOLEAN  inputIsIdeal,
const ring  oring,
const ring  sring 
)

Definition at line 709 of file ideals.cc.

711 {
712  // now sort the result, SB : leave in s_h3
713  // T: put in s_h2 (*T as a matrix)
714  // syz: put in *S
715  idSkipZeroes(s_h3);
716  ideal s_h2 = idInit(IDELEMS(s_h3), s_h3->rank); // will become T
717 
718  #if 0
720  Print("after std: --------------syzComp=%d------------------------\n",syzComp);
721  ipPrint_MA0(TT,"T");
722  PrintLn();
723  idDelete((ideal*)&TT);
724  #endif
725 
726  int j, i=0;
727  for (j=0; j<IDELEMS(s_h3); j++)
728  {
729  if (s_h3->m[j] != NULL)
730  {
731  if (pGetComp(s_h3->m[j]) <= syzComp) // syz_ring == currRing
732  {
733  i++;
734  poly q = s_h3->m[j];
735  while (pNext(q) != NULL)
736  {
737  if (pGetComp(pNext(q)) > syzComp)
738  {
739  s_h2->m[i-1] = pNext(q);
740  pNext(q) = NULL;
741  }
742  else
743  {
744  pIter(q);
745  }
746  }
747  if (!inputIsIdeal) p_Shift(&(s_h3->m[j]), -1,currRing);
748  }
749  else
750  {
751  // we a syzygy here:
752  if (S!=NULL)
753  {
754  p_Shift(&s_h3->m[j], -syzComp,currRing);
755  (*S)->m[j]=s_h3->m[j];
756  s_h3->m[j]=NULL;
757  }
758  else
759  p_Delete(&(s_h3->m[j]),currRing);
760  }
761  }
762  }
763  idSkipZeroes(s_h3);
764 
765  #if 0
766  TT=id_Module2Matrix(idCopy(s_h2),currRing);
767  PrintS("T: ----------------------------------------\n");
768  ipPrint_MA0(TT,"T");
769  PrintLn();
770  idDelete((ideal*)&TT);
771  #endif
772 
773  if (S!=NULL) idSkipZeroes(*S);
774 
775  if (sring!=oring)
776  {
777  rChangeCurrRing(oring);
778  }
779 
780  if (T!=NULL)
781  {
782  *T = mpNew(h1_size,i);
783 
784  for (j=0; j<i; j++)
785  {
786  if (s_h2->m[j] != NULL)
787  {
788  poly q = prMoveR( s_h2->m[j], sring,oring);
789  s_h2->m[j] = NULL;
790 
791  if (q!=NULL)
792  {
793  q=pReverse(q);
794  while (q != NULL)
795  {
796  poly p = q;
797  pIter(q);
798  pNext(p) = NULL;
799  int t=pGetComp(p);
800  pSetComp(p,0);
801  pSetmComp(p);
802  MATELEM(*T,t-syzComp,j+1) = pAdd(MATELEM(*T,t-syzComp,j+1),p);
803  }
804  }
805  }
806  }
807  }
808  id_Delete(&s_h2,sring);
809 
810  for (i=0; i<IDELEMS(s_h3); i++)
811  {
812  s_h3->m[i] = prMoveR_NoSort(s_h3->m[i], sring,oring);
813  }
814  if (S!=NULL)
815  {
816  for (i=0; i<IDELEMS(*S); i++)
817  {
818  (*S)->m[i] = prMoveR_NoSort((*S)->m[i], sring,oring);
819  }
820  }
821  return s_h3;
822 }
#define Print
Definition: emacs.cc:80
void ipPrint_MA0(matrix m, const char *name)
Definition: ipprint.cc:57
STATIC_VAR jList * T
Definition: janet.cc:30
void p_Shift(poly *p, int i, const ring r)
shifts components of the vector p by i
Definition: p_polys.cc:4732
static poly pReverse(poly p)
Definition: p_polys.h:335
poly prMoveR_NoSort(poly &p, ring src_r, ring dest_r)
Definition: prCopy.cc:100
void PrintLn()
Definition: reporter.cc:310
matrix id_Module2Matrix(ideal mod, const ring R)

◆ idGroebner()

static ideal idGroebner ( ideal  temp,
int  syzComp,
GbVariant  alg,
intvec hilb = NULL,
intvec w = NULL,
tHomog  hom = testHomog 
)
static

Definition at line 201 of file ideals.cc.

202 {
203  //Print("syz=%d\n",syzComp);
204  //PrintS(showOption());
205  //PrintLn();
206  ideal temp1;
207  if (w==NULL)
208  {
209  if (hom==testHomog)
210  hom=(tHomog)idHomModule(temp,currRing->qideal,&w); //sets w to weight vector or NULL
211  }
212  else
213  {
214  w=ivCopy(w);
215  hom=isHomog;
216  }
217 #ifdef HAVE_SHIFTBBA
218  if (rIsLPRing(currRing)) alg = GbStd;
219 #endif
220  if ((alg==GbStd)||(alg==GbDefault))
221  {
222  if (TEST_OPT_PROT &&(alg==GbStd)) { PrintS("std:"); mflush(); }
223  temp1 = kStd(temp,currRing->qideal,hom,&w,hilb,syzComp);
224  idDelete(&temp);
225  }
226  else if (alg==GbSlimgb)
227  {
228  if (TEST_OPT_PROT) { PrintS("slimgb:"); mflush(); }
229  temp1 = t_rep_gb(currRing, temp, temp->rank);
230  idDelete(&temp);
231  }
232  else if (alg==GbGroebner)
233  {
234  if (TEST_OPT_PROT) { PrintS("groebner:"); mflush(); }
235  BOOLEAN err;
236  temp1=(ideal)iiCallLibProc1("groebner",temp,MODUL_CMD,err);
237  if (err)
238  {
239  Werror("error %d in >>groebner<<",err);
240  temp1=idInit(1,1);
241  }
242  }
243  else if (alg==GbModstd)
244  {
245  if (TEST_OPT_PROT) { PrintS("modStd:"); mflush(); }
246  BOOLEAN err;
247  void *args[]={temp,(void*)1,NULL};
248  int arg_t[]={MODUL_CMD,INT_CMD,0};
249  leftv temp0=ii_CallLibProcM("modStd",args,arg_t,currRing,err);
250  temp1=(ideal)temp0->data;
251  omFreeBin((ADDRESS)temp0,sleftv_bin);
252  if (err)
253  {
254  Werror("error %d in >>modStd<<",err);
255  temp1=idInit(1,1);
256  }
257  }
258  else if (alg==GbSba)
259  {
260  if (TEST_OPT_PROT) { PrintS("sba:"); mflush(); }
261  temp1 = kSba(temp,currRing->qideal,hom,&w,1,0,NULL);
262  if (w!=NULL) delete w;
263  }
264  else if (alg==GbStdSat)
265  {
266  if (TEST_OPT_PROT) { PrintS("std:sat:"); mflush(); }
267  BOOLEAN err;
268  // search for 2nd block of vars
269  int i=0;
270  int block=-1;
271  loop
272  {
273  if ((currRing->order[i]!=ringorder_c)
274  && (currRing->order[i]!=ringorder_C)
275  && (currRing->order[i]!=ringorder_s))
276  {
277  if (currRing->order[i]==0) { err=TRUE;break;}
278  block++;
279  if (block==1) { block=i; break;}
280  }
281  i++;
282  }
283  if (block>0)
284  {
285  if (TEST_OPT_PROT)
286  {
287  Print("sat(%d..%d)\n",currRing->block0[block],currRing->block1[block]);
288  mflush();
289  }
290  ideal v=idInit(currRing->block1[block]-currRing->block0[block]+1,1);
291  for(i=currRing->block0[block];i<=currRing->block1[block];i++)
292  {
293  v->m[i-currRing->block0[block]]=pOne();
294  pSetExp(v->m[i-currRing->block0[block]],i,1);
295  pSetm(v->m[i-currRing->block0[block]]);
296  }
297  void *args[]={temp,v,NULL};
298  int arg_t[]={MODUL_CMD,IDEAL_CMD,0};
299  leftv temp0=ii_CallLibProcM("satstd",args,arg_t,currRing,err);
300  temp1=(ideal)temp0->data;
301  omFreeBin((ADDRESS)temp0, sleftv_bin);
302  }
303  if (err)
304  {
305  Werror("error %d in >>satstd<<",err);
306  temp1=idInit(1,1);
307  }
308  }
309  if (w!=NULL) delete w;
310  return temp1;
311 }
Class used for (list of) interpreter objects.
Definition: subexpr.h:83
void * data
Definition: subexpr.h:88
const Variable & v
< [in] a sqrfree bivariate poly
Definition: facBivar.h:39
@ IDEAL_CMD
Definition: grammar.cc:284
@ MODUL_CMD
Definition: grammar.cc:287
@ GbStdSat
Definition: ideals.h:130
intvec * ivCopy(const intvec *o)
Definition: intvec.h:135
EXTERN_VAR omBin sleftv_bin
Definition: ipid.h:145
void * iiCallLibProc1(const char *n, void *arg, int arg_type, BOOLEAN &err)
Definition: iplib.cc:623
leftv ii_CallLibProcM(const char *n, void **args, int *arg_types, const ring R, BOOLEAN &err)
args: NULL terminated array of arguments arg_types: 0 terminated array of corresponding types
Definition: iplib.cc:697
ideal kSba(ideal F, ideal Q, tHomog h, intvec **w, int sbaOrder, int arri, intvec *hilb, int syzComp, int newIdeal, intvec *vw)
Definition: kstd1.cc:2604
#define omFreeBin(addr, bin)
Definition: omAllocDecl.h:259
static BOOLEAN rIsLPRing(const ring r)
Definition: ring.h:411
@ ringorder_c
Definition: ring.h:72
@ ringorder_s
s?
Definition: ring.h:76
#define block
Definition: scanner.cc:666
@ isHomog
Definition: structs.h:42
#define loop
Definition: structs.h:80
ideal t_rep_gb(const ring r, ideal arg_I, int syz_comp, BOOLEAN F4_mode)
Definition: tgb.cc:3602
@ INT_CMD
Definition: tok.h:96

◆ idIndexOfKBase()

int idIndexOfKBase ( poly  monom,
ideal  kbase 
)

Definition at line 2537 of file ideals.cc.

2538 {
2539  int j=IDELEMS(kbase);
2540 
2541  while ((j>0) && (kbase->m[j-1]==NULL)) j--;
2542  if (j==0) return -1;
2543  int i=(currRing->N);
2544  while (i>0)
2545  {
2546  loop
2547  {
2548  if (pGetExp(monom,i)>pGetExp(kbase->m[j-1],i)) return -1;
2549  if (pGetExp(monom,i)==pGetExp(kbase->m[j-1],i)) break;
2550  j--;
2551  if (j==0) return -1;
2552  }
2553  if (i==1)
2554  {
2555  while(j>0)
2556  {
2557  if (pGetComp(monom)==pGetComp(kbase->m[j-1])) return j-1;
2558  if (pGetComp(monom)>pGetComp(kbase->m[j-1])) return -1;
2559  j--;
2560  }
2561  }
2562  i--;
2563  }
2564  return -1;
2565 }

◆ idInitializeQuot()

static ideal idInitializeQuot ( ideal  h1,
ideal  h2,
BOOLEAN  h1IsStb,
BOOLEAN addOnlyOne,
int *  kkmax 
)
static

addOnlyOne &&

Definition at line 1383 of file ideals.cc.

1384 {
1385  idTest(h1);
1386  idTest(h2);
1387 
1388  ideal temph1;
1389  poly p,q = NULL;
1390  int i,l,ll,k,kkk,kmax;
1391  int j = 0;
1392  int k1 = id_RankFreeModule(h1,currRing);
1393  int k2 = id_RankFreeModule(h2,currRing);
1394  tHomog hom=isNotHomog;
1395  k=si_max(k1,k2);
1396  if (k==0)
1397  k = 1;
1398  if ((k2==0) && (k>1)) *addOnlyOne = FALSE;
1399  intvec * weights;
1400  hom = (tHomog)idHomModule(h1,currRing->qideal,&weights);
1401  if /**addOnlyOne &&*/ (/*(*/ !h1IsStb /*)*/)
1402  temph1 = kStd(h1,currRing->qideal,hom,&weights,NULL);
1403  else
1404  temph1 = idCopy(h1);
1405  if (weights!=NULL) delete weights;
1406  idTest(temph1);
1407 /*--- making a single vector from h2 ---------------------*/
1408  for (i=0; i<IDELEMS(h2); i++)
1409  {
1410  if (h2->m[i] != NULL)
1411  {
1412  p = pCopy(h2->m[i]);
1413  if (k2 == 0)
1414  p_Shift(&p,j*k+1,currRing);
1415  else
1416  p_Shift(&p,j*k,currRing);
1417  q = pAdd(q,p);
1418  j++;
1419  }
1420  }
1421  *kkmax = kmax = j*k+1;
1422 /*--- adding a monomial for the result (syzygy) ----------*/
1423  p = q;
1424  while (pNext(p)!=NULL) pIter(p);
1425  pNext(p) = pOne();
1426  pIter(p);
1427  pSetComp(p,kmax);
1428  pSetmComp(p);
1429 /*--- constructing the big matrix ------------------------*/
1430  ideal h4 = idInit(k,kmax+k-1);
1431  h4->m[0] = q;
1432  if (k2 == 0)
1433  {
1434  for (i=1; i<k; i++)
1435  {
1436  if (h4->m[i-1]!=NULL)
1437  {
1438  p = p_Copy_noCheck(h4->m[i-1], currRing); /*h4->m[i-1]!=NULL*/
1439  p_Shift(&p,1,currRing);
1440  h4->m[i] = p;
1441  }
1442  else break;
1443  }
1444  }
1445  idSkipZeroes(h4);
1446  kkk = IDELEMS(h4);
1447  i = IDELEMS(temph1);
1448  for (l=0; l<i; l++)
1449  {
1450  if(temph1->m[l]!=NULL)
1451  {
1452  for (ll=0; ll<j; ll++)
1453  {
1454  p = pCopy(temph1->m[l]);
1455  if (k1 == 0)
1456  p_Shift(&p,ll*k+1,currRing);
1457  else
1458  p_Shift(&p,ll*k,currRing);
1459  if (kkk >= IDELEMS(h4))
1460  {
1461  pEnlargeSet(&(h4->m),IDELEMS(h4),16);
1462  IDELEMS(h4) += 16;
1463  }
1464  h4->m[kkk] = p;
1465  kkk++;
1466  }
1467  }
1468  }
1469 /*--- if h2 goes in as single vector - the h1-part is just SB ---*/
1470  if (*addOnlyOne)
1471  {
1472  idSkipZeroes(h4);
1473  p = h4->m[0];
1474  for (i=0;i<IDELEMS(h4)-1;i++)
1475  {
1476  h4->m[i] = h4->m[i+1];
1477  }
1478  h4->m[IDELEMS(h4)-1] = p;
1479  }
1480  idDelete(&temph1);
1481  //idTest(h4);//see remark at the beginning
1482  return h4;
1483 }
static int si_max(const int a, const int b)
Definition: auxiliary.h:124
#define idTest(id)
Definition: ideals.h:47
static poly p_Copy_noCheck(poly p, const ring r)
returns a copy of p (without any additional testing)
Definition: p_polys.h:802
long id_RankFreeModule(ideal s, ring lmRing, ring tailRing)
return the maximal component number found in any polynomial in s
@ isNotHomog
Definition: structs.h:41

◆ idIsSubModule()

BOOLEAN idIsSubModule ( ideal  id1,
ideal  id2 
)

Definition at line 2032 of file ideals.cc.

2033 {
2034  int i;
2035  poly p;
2036 
2037  if (idIs0(id1)) return TRUE;
2038  for (i=0;i<IDELEMS(id1);i++)
2039  {
2040  if (id1->m[i] != NULL)
2041  {
2042  p = kNF(id2,currRing->qideal,id1->m[i]);
2043  if (p != NULL)
2044  {
2045  p_Delete(&p,currRing);
2046  return FALSE;
2047  }
2048  }
2049  }
2050  return TRUE;
2051 }
poly kNF(ideal F, ideal Q, poly p, int syzComp, int lazyReduce)
Definition: kstd1.cc:3158

◆ idKeepFirstK()

void idKeepFirstK ( ideal  id,
const int  k 
)

keeps the first k (>= 1) entries of the given ideal (Note that the kept polynomials may be zero.)

Definition at line 2908 of file ideals.cc.

2909 {
2910  for (int i = IDELEMS(id)-1; i >= k; i--)
2911  {
2912  if (id->m[i] != NULL) pDelete(&id->m[i]);
2913  }
2914  int kk=k;
2915  if (k==0) kk=1; /* ideals must have at least one element(0)*/
2916  pEnlargeSet(&(id->m), IDELEMS(id), kk-IDELEMS(id));
2917  IDELEMS(id) = kk;
2918 }

◆ idLift()

ideal idLift ( ideal  mod,
ideal  submod,
ideal *  rest,
BOOLEAN  goodShape,
BOOLEAN  isSB,
BOOLEAN  divide,
matrix unit,
GbVariant  alg 
)

Definition at line 1099 of file ideals.cc.

1101 {
1102  int lsmod =id_RankFreeModule(submod,currRing), j, k;
1103  int comps_to_add=0;
1104  int idelems_mod=IDELEMS(mod);
1105  int idelems_submod=IDELEMS(submod);
1106  poly p;
1107 
1108  if (idIs0(submod))
1109  {
1110  if (rest!=NULL)
1111  {
1112  *rest=idInit(1,mod->rank);
1113  }
1114  idLift_setUnit(idelems_submod,unit);
1115  return idInit(1,idelems_mod);
1116  }
1117  if (idIs0(mod)) /* and not idIs0(submod) */
1118  {
1119  if (rest!=NULL)
1120  {
1121  *rest=idCopy(submod);
1122  idLift_setUnit(idelems_submod,unit);
1123  return idInit(1,idelems_mod);
1124  }
1125  else
1126  {
1127  WerrorS("2nd module does not lie in the first");
1128  return NULL;
1129  }
1130  }
1131  if (unit!=NULL)
1132  {
1133  comps_to_add = idelems_submod;
1134  while ((comps_to_add>0) && (submod->m[comps_to_add-1]==NULL))
1135  comps_to_add--;
1136  }
1138  if ((k!=0) && (lsmod==0)) lsmod=1;
1139  k=si_max(k,(int)mod->rank);
1140  if (k<submod->rank) { WarnS("rk(submod) > rk(mod) ?");k=submod->rank; }
1141 
1142  ring orig_ring=currRing;
1143  ring syz_ring=rAssure_SyzOrder(orig_ring,TRUE);
1144  rSetSyzComp(k,syz_ring);
1145  rChangeCurrRing(syz_ring);
1146 
1147  ideal s_mod, s_temp;
1148  if (orig_ring != syz_ring)
1149  {
1150  s_mod = idrCopyR_NoSort(mod,orig_ring,syz_ring);
1151  s_temp = idrCopyR_NoSort(submod,orig_ring,syz_ring);
1152  }
1153  else
1154  {
1155  s_mod = mod;
1156  s_temp = idCopy(submod);
1157  }
1158  ideal s_h3;
1159  if (isSB)
1160  {
1161  s_h3 = idCopy(s_mod);
1162  idPrepareStd(s_h3, k+comps_to_add);
1163  }
1164  else
1165  {
1166  s_h3 = idPrepare(s_mod,NULL,(tHomog)FALSE,k+comps_to_add,NULL,alg);
1167  }
1168  if (!goodShape)
1169  {
1170  for (j=0;j<IDELEMS(s_h3);j++)
1171  {
1172  if ((s_h3->m[j] != NULL) && (pMinComp(s_h3->m[j]) > k))
1173  p_Delete(&(s_h3->m[j]),currRing);
1174  }
1175  }
1176  idSkipZeroes(s_h3);
1177  if (lsmod==0)
1178  {
1179  id_Shift(s_temp,1,currRing);
1180  }
1181  if (unit!=NULL)
1182  {
1183  for(j = 0;j<comps_to_add;j++)
1184  {
1185  p = s_temp->m[j];
1186  if (p!=NULL)
1187  {
1188  while (pNext(p)!=NULL) pIter(p);
1189  pNext(p) = pOne();
1190  pIter(p);
1191  pSetComp(p,1+j+k);
1192  pSetmComp(p);
1193  p = pNeg(p);
1194  }
1195  }
1196  s_temp->rank += (k+comps_to_add);
1197  }
1198  ideal s_result = kNF(s_h3,currRing->qideal,s_temp,k);
1199  s_result->rank = s_h3->rank;
1200  ideal s_rest = idInit(IDELEMS(s_result),k);
1201  idDelete(&s_h3);
1202  idDelete(&s_temp);
1203 
1204  for (j=0;j<IDELEMS(s_result);j++)
1205  {
1206  if (s_result->m[j]!=NULL)
1207  {
1208  if (pGetComp(s_result->m[j])<=k)
1209  {
1210  if (!divide)
1211  {
1212  if (rest==NULL)
1213  {
1214  if (isSB)
1215  {
1216  WarnS("first module not a standardbasis\n"
1217  "// ** or second not a proper submodule");
1218  }
1219  else
1220  WerrorS("2nd module does not lie in the first");
1221  }
1222  idDelete(&s_result);
1223  idDelete(&s_rest);
1224  if(syz_ring!=orig_ring)
1225  {
1226  idDelete(&s_mod);
1227  rChangeCurrRing(orig_ring);
1228  rDelete(syz_ring);
1229  }
1230  if (unit!=NULL)
1231  {
1232  idLift_setUnit(idelems_submod,unit);
1233  }
1234  if (rest!=NULL) *rest=idCopy(submod);
1235  s_result=idInit(idelems_submod,idelems_mod);
1236  return s_result;
1237  }
1238  else
1239  {
1240  p = s_rest->m[j] = s_result->m[j];
1241  while ((pNext(p)!=NULL) && (pGetComp(pNext(p))<=k)) pIter(p);
1242  s_result->m[j] = pNext(p);
1243  pNext(p) = NULL;
1244  }
1245  }
1246  p_Shift(&(s_result->m[j]),-k,currRing);
1247  pNeg(s_result->m[j]);
1248  }
1249  }
1250  if ((lsmod==0) && (s_rest!=NULL))
1251  {
1252  for (j=IDELEMS(s_rest);j>0;j--)
1253  {
1254  if (s_rest->m[j-1]!=NULL)
1255  {
1256  p_Shift(&(s_rest->m[j-1]),-1,currRing);
1257  }
1258  }
1259  }
1260  if(syz_ring!=orig_ring)
1261  {
1262  idDelete(&s_mod);
1263  rChangeCurrRing(orig_ring);
1264  s_result = idrMoveR_NoSort(s_result, syz_ring, orig_ring);
1265  s_rest = idrMoveR_NoSort(s_rest, syz_ring, orig_ring);
1266  rDelete(syz_ring);
1267  }
1268  if (rest!=NULL)
1269  {
1270  s_rest->rank=mod->rank;
1271  *rest = s_rest;
1272  }
1273  else
1274  idDelete(&s_rest);
1275  if (unit!=NULL)
1276  {
1277  *unit=mpNew(idelems_submod,idelems_submod);
1278  int i;
1279  for(i=0;i<IDELEMS(s_result);i++)
1280  {
1281  poly p=s_result->m[i];
1282  poly q=NULL;
1283  while(p!=NULL)
1284  {
1285  if(pGetComp(p)<=comps_to_add)
1286  {
1287  pSetComp(p,0);
1288  if (q!=NULL)
1289  {
1290  pNext(q)=pNext(p);
1291  }
1292  else
1293  {
1294  pIter(s_result->m[i]);
1295  }
1296  pNext(p)=NULL;
1297  MATELEM(*unit,i+1,i+1)=pAdd(MATELEM(*unit,i+1,i+1),p);
1298  if(q!=NULL) p=pNext(q);
1299  else p=s_result->m[i];
1300  }
1301  else
1302  {
1303  q=p;
1304  pIter(p);
1305  }
1306  }
1307  p_Shift(&s_result->m[i],-comps_to_add,currRing);
1308  }
1309  }
1310  s_result->rank=idelems_mod;
1311  return s_result;
1312 }
CF_NO_INLINE FACTORY_PUBLIC CanonicalForm mod(const CanonicalForm &, const CanonicalForm &)
CanonicalForm divide(const CanonicalForm &ff, const CanonicalForm &f, const CFList &as)
static void idPrepareStd(ideal s_temp, int k)
Definition: ideals.cc:1041
static void idLift_setUnit(int e_mod, matrix *unit)
Definition: ideals.cc:1082
static ideal idPrepare(ideal h1, ideal h11, tHomog hom, int syzcomp, intvec **w, GbVariant alg)
Definition: ideals.cc:607
#define pNeg(p)
Definition: polys.h:198
#define pMinComp(p)
Definition: polys.h:300
ideal idrMoveR_NoSort(ideal &id, ring src_r, ring dest_r)
Definition: prCopy.cc:260
ideal idrCopyR_NoSort(ideal id, ring src_r, ring dest_r)
Definition: prCopy.cc:204
ring rAssure_SyzOrder(const ring r, BOOLEAN complete)
Definition: ring.cc:4421
void rSetSyzComp(int k, const ring r)
Definition: ring.cc:5036
void id_Shift(ideal M, int s, const ring r)

◆ idLift_setUnit()

static void idLift_setUnit ( int  e_mod,
matrix unit 
)
static

Definition at line 1082 of file ideals.cc.

1083 {
1084  if (unit!=NULL)
1085  {
1086  *unit=mpNew(e_mod,e_mod);
1087  // make sure that U is a diagonal matrix of units
1088  for(int i=e_mod;i>0;i--)
1089  {
1090  MATELEM(*unit,i,i)=pOne();
1091  }
1092  }
1093 }

◆ idLiftStd()

ideal idLiftStd ( ideal  h1,
matrix T,
tHomog  hi,
ideal *  S,
GbVariant  alg,
ideal  h11 
)

Definition at line 976 of file ideals.cc.

978 {
979  int inputIsIdeal=id_RankFreeModule(h1,currRing);
980  long k;
981  intvec *w=NULL;
982 
983  idDelete((ideal*)T);
984  BOOLEAN lift3=FALSE;
985  if (S!=NULL) { lift3=TRUE; idDelete(S); }
986  if (idIs0(h1))
987  {
988  *T=mpNew(1,0);
989  if (lift3)
990  {
991  *S=idFreeModule(IDELEMS(h1));
992  }
993  return idInit(1,h1->rank);
994  }
995 
996  BITSET save2;
997  SI_SAVE_OPT2(save2);
998 
999  k=si_max(1,inputIsIdeal);
1000 
1001  if ((!lift3)&&(!TEST_OPT_RETURN_SB)) si_opt_2 |=Sy_bit(V_IDLIFT);
1002 
1003  ring orig_ring = currRing;
1004  ring syz_ring = rAssure_SyzOrder(orig_ring,TRUE);
1005  rSetSyzComp(k,syz_ring);
1006  rChangeCurrRing(syz_ring);
1007 
1008  ideal s_h1;
1009 
1010  if (orig_ring != syz_ring)
1011  s_h1 = idrCopyR_NoSort(h1,orig_ring,syz_ring);
1012  else
1013  s_h1 = h1;
1014  ideal s_h11=NULL;
1015  if (h11!=NULL)
1016  {
1017  s_h11=idrCopyR_NoSort(h11,orig_ring,syz_ring);
1018  }
1019 
1020 
1021  ideal s_h3=idPrepare(s_h1,s_h11,hi,k,&w,alg); // main (syz) GB computation
1022 
1023 
1024  if (w!=NULL) delete w;
1025  if (syz_ring!=orig_ring)
1026  {
1027  idDelete(&s_h1);
1028  if (s_h11!=NULL) idDelete(&s_h11);
1029  }
1030 
1031  if (S!=NULL) (*S)=idInit(IDELEMS(s_h3),IDELEMS(h1));
1032 
1033  s_h3=idExtractG_T_S(s_h3,T,S,k,IDELEMS(h1),inputIsIdeal,orig_ring,syz_ring);
1034 
1035  if (syz_ring!=orig_ring) rDelete(syz_ring);
1036  s_h3->rank=h1->rank;
1037  SI_RESTORE_OPT2(save2);
1038  return s_h3;
1039 }
ideal idExtractG_T_S(ideal s_h3, matrix *T, ideal *S, long syzComp, int h1_size, BOOLEAN inputIsIdeal, const ring oring, const ring sring)
Definition: ideals.cc:709
ideal idFreeModule(int i)
Definition: ideals.h:111
VAR unsigned si_opt_2
Definition: options.c:6
#define SI_SAVE_OPT2(A)
Definition: options.h:22
#define SI_RESTORE_OPT2(A)
Definition: options.h:25
#define Sy_bit(x)
Definition: options.h:31
#define TEST_OPT_RETURN_SB
Definition: options.h:111
#define V_IDLIFT
Definition: options.h:62
#define BITSET
Definition: structs.h:20

◆ idLiftW()

void idLiftW ( ideal  P,
ideal  Q,
int  n,
matrix T,
ideal &  R,
int *  w 
)

Definition at line 1318 of file ideals.cc.

1319 {
1320  long N=0;
1321  int i;
1322  for(i=IDELEMS(Q)-1;i>=0;i--)
1323  if(w==NULL)
1324  N=si_max(N,p_Deg(Q->m[i],currRing));
1325  else
1326  N=si_max(N,p_DegW(Q->m[i],w,currRing));
1327  N+=n;
1328 
1329  T=mpNew(IDELEMS(Q),IDELEMS(P));
1330  R=idInit(IDELEMS(P),P->rank);
1331 
1332  for(i=IDELEMS(P)-1;i>=0;i--)
1333  {
1334  poly p;
1335  if(w==NULL)
1336  p=ppJet(P->m[i],N);
1337  else
1338  p=ppJetW(P->m[i],N,w);
1339 
1340  int j=IDELEMS(Q)-1;
1341  while(p!=NULL)
1342  {
1343  if(pDivisibleBy(Q->m[j],p))
1344  {
1345  poly p0=p_DivideM(pHead(p),pHead(Q->m[j]),currRing);
1346  if(w==NULL)
1347  p=pJet(pSub(p,ppMult_mm(Q->m[j],p0)),N);
1348  else
1349  p=pJetW(pSub(p,ppMult_mm(Q->m[j],p0)),N,w);
1350  pNormalize(p);
1351  if(((w==NULL)&&(p_Deg(p0,currRing)>n))||((w!=NULL)&&(p_DegW(p0,w,currRing)>n)))
1352  p_Delete(&p0,currRing);
1353  else
1354  MATELEM(T,j+1,i+1)=pAdd(MATELEM(T,j+1,i+1),p0);
1355  j=IDELEMS(Q)-1;
1356  }
1357  else
1358  {
1359  if(j==0)
1360  {
1361  poly p0=p;
1362  pIter(p);
1363  pNext(p0)=NULL;
1364  if(((w==NULL)&&(p_Deg(p0,currRing)>n))
1365  ||((w!=NULL)&&(p_DegW(p0,w,currRing)>n)))
1366  p_Delete(&p0,currRing);
1367  else
1368  R->m[i]=pAdd(R->m[i],p0);
1369  j=IDELEMS(Q)-1;
1370  }
1371  else
1372  j--;
1373  }
1374  }
1375  }
1376 }
STATIC_VAR jList * Q
Definition: janet.cc:30
poly p_DivideM(poly a, poly b, const ring r)
Definition: p_polys.cc:1565
long p_DegW(poly p, const int *w, const ring R)
Definition: p_polys.cc:685
long p_Deg(poly a, const ring r)
Definition: p_polys.cc:582
#define ppJet(p, m)
Definition: polys.h:367
#define pHead(p)
returns newly allocated copy of Lm(p), coef is copied, next=NULL, p might be NULL
Definition: polys.h:67
#define ppMult_mm(p, m)
Definition: polys.h:201
#define pJet(p, m)
Definition: polys.h:368
#define pSub(a, b)
Definition: polys.h:287
#define ppJetW(p, m, iv)
Definition: polys.h:369
#define pJetW(p, m, iv)
Definition: polys.h:370
#define pNormalize(p)
Definition: polys.h:317
#define pDivisibleBy(a, b)
returns TRUE, if leading monom of a divides leading monom of b i.e., if there exists a expvector c > ...
Definition: polys.h:138
#define R
Definition: sirandom.c:27

◆ idMinBase()

ideal idMinBase ( ideal  h1)

Definition at line 51 of file ideals.cc.

52 {
53  ideal h2, h3,h4,e;
54  int j,k;
55  int i,l,ll;
56  intvec * wth;
57  BOOLEAN homog;
59  {
60  WarnS("minbase applies only to the local or homogeneous case over coefficient fields");
61  e=idCopy(h1);
62  return e;
63  }
64  homog = idHomModule(h1,currRing->qideal,&wth);
66  {
67  if(!homog)
68  {
69  WarnS("minbase applies only to the local or homogeneous case over coefficient fields");
70  e=idCopy(h1);
71  return e;
72  }
73  else
74  {
75  ideal re=kMin_std(h1,currRing->qideal,(tHomog)homog,&wth,h2,NULL,0,3);
76  idDelete(&re);
77  return h2;
78  }
79  }
80  e=idInit(1,h1->rank);
81  if (idIs0(h1))
82  {
83  return e;
84  }
85  pEnlargeSet(&(e->m),IDELEMS(e),15);
86  IDELEMS(e) = 16;
87  h2 = kStd(h1,currRing->qideal,isNotHomog,NULL);
88  h3 = idMaxIdeal(1);
89  h4=idMult(h2,h3);
90  idDelete(&h3);
91  h3=kStd(h4,currRing->qideal,isNotHomog,NULL);
92  k = IDELEMS(h3);
93  while ((k > 0) && (h3->m[k-1] == NULL)) k--;
94  j = -1;
95  l = IDELEMS(h2);
96  while ((l > 0) && (h2->m[l-1] == NULL)) l--;
97  for (i=l-1; i>=0; i--)
98  {
99  if (h2->m[i] != NULL)
100  {
101  ll = 0;
102  while ((ll < k) && ((h3->m[ll] == NULL)
103  || !pDivisibleBy(h3->m[ll],h2->m[i])))
104  ll++;
105  if (ll >= k)
106  {
107  j++;
108  if (j > IDELEMS(e)-1)
109  {
110  pEnlargeSet(&(e->m),IDELEMS(e),16);
111  IDELEMS(e) += 16;
112  }
113  e->m[j] = pCopy(h2->m[i]);
114  }
115  }
116  }
117  idDelete(&h2);
118  idDelete(&h3);
119  idDelete(&h4);
120  if (currRing->qideal!=NULL)
121  {
122  h3=idInit(1,e->rank);
123  h2=kNF(h3,currRing->qideal,e);
124  idDelete(&h3);
125  idDelete(&e);
126  e=h2;
127  }
128  idSkipZeroes(e);
129  return e;
130 }
static ideal idMult(ideal h1, ideal h2)
hh := h1 * h2
Definition: ideals.h:84
#define idMaxIdeal(D)
initialise the maximal ideal (at 0)
Definition: ideals.h:33
ideal kMin_std(ideal F, ideal Q, tHomog h, intvec **w, ideal &M, intvec *hilb, int syzComp, int reduced)
Definition: kstd1.cc:3009
static BOOLEAN rField_is_Ring(const ring r)
Definition: ring.h:489
BOOLEAN rHasGlobalOrdering(const ring r)
Definition: ring.h:764

◆ idMinEmbedding()

ideal idMinEmbedding ( ideal  arg,
BOOLEAN  inPlace,
intvec **  w 
)

Definition at line 2671 of file ideals.cc.

2672 {
2673  if (idIs0(arg)) return idInit(1,arg->rank);
2674  int i,next_gen,next_comp;
2675  ideal res=arg;
2676  if (!inPlace) res = idCopy(arg);
2677  res->rank=si_max(res->rank,id_RankFreeModule(res,currRing));
2678  int *red_comp=(int*)omAlloc((res->rank+1)*sizeof(int));
2679  for (i=res->rank;i>=0;i--) red_comp[i]=i;
2680 
2681  int del=0;
2682  loop
2683  {
2684  next_gen = id_ReadOutPivot(res, &next_comp, currRing);
2685  if (next_gen<0) break;
2686  del++;
2687  syGaussForOne(res,next_gen,next_comp,0,IDELEMS(res));
2688  for(i=next_comp+1;i<=arg->rank;i++) red_comp[i]--;
2689  if ((w !=NULL)&&(*w!=NULL))
2690  {
2691  for(i=next_comp;i<(*w)->length();i++) (**w)[i-1]=(**w)[i];
2692  }
2693  }
2694 
2695  idDeleteComps(res,red_comp,del);
2696  idSkipZeroes(res);
2697  omFree(red_comp);
2698 
2699  if ((w !=NULL)&&(*w!=NULL) &&(del>0))
2700  {
2701  int nl=si_max((*w)->length()-del,1);
2702  intvec *wtmp=new intvec(nl);
2703  for(i=0;i<res->rank;i++) (*wtmp)[i]=(**w)[i];
2704  delete *w;
2705  *w=wtmp;
2706  }
2707  return res;
2708 }
static void idDeleteComps(ideal arg, int *red_comp, int del)
Definition: ideals.cc:2644
int id_ReadOutPivot(ideal arg, int *comp, const ring r)
void syGaussForOne(ideal syz, int elnum, int ModComp, int from, int till)
Definition: syz.cc:218

◆ idMinors()

ideal idMinors ( matrix  a,
int  ar,
ideal  R 
)

compute all ar-minors of the matrix a the caller of mpRecMin the elements of the result are not in R (if R!=NULL)

Definition at line 1964 of file ideals.cc.

1965 {
1966 
1967  const ring origR=currRing;
1968  id_Test((ideal)a, origR);
1969 
1970  const int r = a->nrows;
1971  const int c = a->ncols;
1972 
1973  if((ar<=0) || (ar>r) || (ar>c))
1974  {
1975  Werror("%d-th minor, matrix is %dx%d",ar,r,c);
1976  return NULL;
1977  }
1978 
1979  ideal h = id_Matrix2Module(mp_Copy(a,origR),origR);
1980  long bound = sm_ExpBound(h,c,r,ar,origR);
1981  id_Delete(&h, origR);
1982 
1983  ring tmpR = sm_RingChange(origR,bound);
1984 
1985  matrix b = mpNew(r,c);
1986 
1987  for (int i=r*c-1;i>=0;i--)
1988  if (a->m[i] != NULL)
1989  b->m[i] = prCopyR(a->m[i],origR,tmpR);
1990 
1991  id_Test( (ideal)b, tmpR);
1992 
1993  if (R!=NULL)
1994  {
1995  R = idrCopyR(R,origR,tmpR); // TODO: overwrites R? memory leak?
1996  //if (ar>1) // otherwise done in mpMinorToResult
1997  //{
1998  // matrix bb=(matrix)kNF(R,currRing->qideal,(ideal)b);
1999  // bb->rank=b->rank; bb->nrows=b->nrows; bb->ncols=b->ncols;
2000  // idDelete((ideal*)&b); b=bb;
2001  //}
2002  id_Test( R, tmpR);
2003  }
2004 
2005  int size=binom(r,ar)*binom(c,ar);
2006  ideal result = idInit(size,1);
2007 
2008  int elems = 0;
2009 
2010  if(ar>1)
2011  mp_RecMin(ar-1,result,elems,b,r,c,NULL,R,tmpR);
2012  else
2013  mp_MinorToResult(result,elems,b,r,c,R,tmpR);
2014 
2015  id_Test( (ideal)b, tmpR);
2016 
2017  id_Delete((ideal *)&b, tmpR);
2018 
2019  if (R!=NULL) id_Delete(&R,tmpR);
2020 
2021  rChangeCurrRing(origR);
2022  result = idrMoveR(result,tmpR,origR);
2023  sm_KillModifiedRing(tmpR);
2024  idTest(result);
2025  return result;
2026 }
int size(const CanonicalForm &f, const Variable &v)
int size ( const CanonicalForm & f, const Variable & v )
Definition: cf_ops.cc:600
static CanonicalForm bound(const CFMatrix &M)
Definition: cf_linsys.cc:460
int nrows
Definition: matpol.h:20
int ncols
Definition: matpol.h:21
int binom(int n, int r)
matrix mp_Copy(matrix a, const ring r)
copies matrix a (from ring r to r)
Definition: matpol.cc:64
void mp_MinorToResult(ideal result, int &elems, matrix a, int r, int c, ideal R, const ring)
entries of a are minors and go to result (only if not in R)
Definition: matpol.cc:1507
void mp_RecMin(int ar, ideal result, int &elems, matrix a, int lr, int lc, poly barDiv, ideal R, const ring r)
produces recursively the ideal of all arxar-minors of a
Definition: matpol.cc:1603
ideal idrMoveR(ideal &id, ring src_r, ring dest_r)
Definition: prCopy.cc:247
poly prCopyR(poly p, ring src_r, ring dest_r)
Definition: prCopy.cc:34
ideal id_Matrix2Module(matrix mat, const ring R)
converts mat to module, destroys mat
#define id_Test(A, lR)
Definition: simpleideals.h:78
long sm_ExpBound(ideal m, int di, int ra, int t, const ring currRing)
Definition: sparsmat.cc:188
ring sm_RingChange(const ring origR, long bound)
Definition: sparsmat.cc:258
void sm_KillModifiedRing(ring r)
Definition: sparsmat.cc:289

◆ idModulo()

ideal idModulo ( ideal  h2,
ideal  h1,
tHomog  hom,
intvec **  w,
matrix T,
GbVariant  alg 
)

Definition at line 2398 of file ideals.cc.

2399 {
2400 #ifdef HAVE_SHIFTBBA
2401  if (rIsLPRing(currRing))
2402  return idModuloLP(h2,h1,hom,w,T,alg);
2403 #endif
2404  intvec *wtmp=NULL;
2405  if (T!=NULL) idDelete((ideal*)T);
2406 
2407  int i,flength=0,slength,length;
2408 
2409  if (idIs0(h2))
2410  return idFreeModule(si_max(1,h2->ncols));
2411  if (!idIs0(h1))
2412  flength = id_RankFreeModule(h1,currRing);
2413  slength = id_RankFreeModule(h2,currRing);
2414  length = si_max(flength,slength);
2415  BOOLEAN inputIsIdeal=FALSE;
2416  if (length==0)
2417  {
2418  length = 1;
2419  inputIsIdeal=TRUE;
2420  }
2421  if ((w!=NULL)&&((*w)!=NULL))
2422  {
2423  //Print("input weights:");(*w)->show(1);PrintLn();
2424  int d;
2425  int k;
2426  wtmp=new intvec(length+IDELEMS(h2));
2427  for (i=0;i<length;i++)
2428  ((*wtmp)[i])=(**w)[i];
2429  for (i=0;i<IDELEMS(h2);i++)
2430  {
2431  poly p=h2->m[i];
2432  if (p!=NULL)
2433  {
2434  d = p_Deg(p,currRing);
2435  k= pGetComp(p);
2436  if (slength>0) k--;
2437  d +=((**w)[k]);
2438  ((*wtmp)[i+length]) = d;
2439  }
2440  }
2441  //Print("weights:");wtmp->show(1);PrintLn();
2442  }
2443  ideal s_temp1;
2444  ring orig_ring=currRing;
2445  ring syz_ring=rAssure_SyzOrder(orig_ring, TRUE);
2446  rSetSyzComp(length,syz_ring);
2447  {
2448  rChangeCurrRing(syz_ring);
2449  ideal s1,s2;
2450 
2451  if (syz_ring != orig_ring)
2452  {
2453  s1 = idrCopyR_NoSort(h1, orig_ring, syz_ring);
2454  s2 = idrCopyR_NoSort(h2, orig_ring, syz_ring);
2455  }
2456  else
2457  {
2458  s1=idCopy(h1);
2459  s2=idCopy(h2);
2460  }
2461 
2462  unsigned save_opt,save_opt2;
2463  SI_SAVE_OPT1(save_opt);
2464  SI_SAVE_OPT2(save_opt2);
2465  if (T==NULL) si_opt_1 |= Sy_bit(OPT_REDTAIL);
2467  s_temp1 = idPrepare(s2,s1,testHomog,length,w,alg);
2468  SI_RESTORE_OPT1(save_opt);
2469  SI_RESTORE_OPT2(save_opt2);
2470  }
2471 
2472  //if (wtmp!=NULL) Print("output weights:");wtmp->show(1);PrintLn();
2473  if ((w!=NULL) && (*w !=NULL) && (wtmp!=NULL))
2474  {
2475  delete *w;
2476  *w=new intvec(IDELEMS(h2));
2477  for (i=0;i<IDELEMS(h2);i++)
2478  ((**w)[i])=(*wtmp)[i+length];
2479  }
2480  if (wtmp!=NULL) delete wtmp;
2481 
2482  ideal result=idInit(IDELEMS(s_temp1),IDELEMS(h2));
2483  s_temp1=idExtractG_T_S(s_temp1,T,&result,length,IDELEMS(h2),inputIsIdeal,orig_ring,syz_ring);
2484 
2485  idDelete(&s_temp1);
2486  if (syz_ring!=orig_ring)
2487  {
2488  rDelete(syz_ring);
2489  }
2490  idTest(h2);
2491  idTest(h1);
2492  idTest(result);
2493  if (T!=NULL) idTest((ideal)*T);
2494  return result;
2495 }
ideal idModuloLP(ideal h2, ideal h1, tHomog, intvec **w, matrix *T, GbVariant alg)
Definition: ideals.cc:2205
static BOOLEAN length(leftv result, leftv arg)
Definition: interval.cc:257
VAR unsigned si_opt_1
Definition: options.c:5
#define OPT_REDTAIL_SYZ
Definition: options.h:86
#define OPT_REDTAIL
Definition: options.h:90
#define SI_SAVE_OPT1(A)
Definition: options.h:21
#define SI_RESTORE_OPT1(A)
Definition: options.h:24

◆ idModuloLP()

ideal idModuloLP ( ideal  h2,
ideal  h1,
tHomog  ,
intvec **  w,
matrix T,
GbVariant  alg 
)

Definition at line 2205 of file ideals.cc.

2206 {
2207  intvec *wtmp=NULL;
2208  if (T!=NULL) idDelete((ideal*)T);
2209 
2210  int i,k,rk,flength=0,slength,length;
2211  poly p,q;
2212 
2213  if (idIs0(h2))
2214  return idFreeModule(si_max(1,h2->ncols));
2215  if (!idIs0(h1))
2216  flength = id_RankFreeModule(h1,currRing);
2217  slength = id_RankFreeModule(h2,currRing);
2218  length = si_max(flength,slength);
2219  if (length==0)
2220  {
2221  length = 1;
2222  }
2223  ideal temp = idInit(IDELEMS(h2),length+IDELEMS(h2));
2224  if ((w!=NULL)&&((*w)!=NULL))
2225  {
2226  //Print("input weights:");(*w)->show(1);PrintLn();
2227  int d;
2228  int k;
2229  wtmp=new intvec(length+IDELEMS(h2));
2230  for (i=0;i<length;i++)
2231  ((*wtmp)[i])=(**w)[i];
2232  for (i=0;i<IDELEMS(h2);i++)
2233  {
2234  poly p=h2->m[i];
2235  if (p!=NULL)
2236  {
2237  d = p_Deg(p,currRing);
2238  k= pGetComp(p);
2239  if (slength>0) k--;
2240  d +=((**w)[k]);
2241  ((*wtmp)[i+length]) = d;
2242  }
2243  }
2244  //Print("weights:");wtmp->show(1);PrintLn();
2245  }
2246  for (i=0;i<IDELEMS(h2);i++)
2247  {
2248  temp->m[i] = pCopy(h2->m[i]);
2249  q = pOne();
2250  // non multiplicative variable
2251  pSetExp(q, currRing->isLPring - currRing->LPncGenCount + i + 1, 1);
2252  p_Setm(q, currRing);
2253  pSetComp(q,i+1+length);
2254  pSetmComp(q);
2255  if(temp->m[i]!=NULL)
2256  {
2257  if (slength==0) p_Shift(&(temp->m[i]),1,currRing);
2258  p = temp->m[i];
2259  temp->m[i] = pAdd(p, q);
2260  }
2261  else
2262  temp->m[i]=q;
2263  }
2264  rk = k = IDELEMS(h2);
2265  if (!idIs0(h1))
2266  {
2267  pEnlargeSet(&(temp->m),IDELEMS(temp),IDELEMS(h1));
2268  IDELEMS(temp) += IDELEMS(h1);
2269  for (i=0;i<IDELEMS(h1);i++)
2270  {
2271  if (h1->m[i]!=NULL)
2272  {
2273  temp->m[k] = pCopy(h1->m[i]);
2274  if (flength==0) p_Shift(&(temp->m[k]),1,currRing);
2275  k++;
2276  }
2277  }
2278  }
2279 
2280  ring orig_ring=currRing;
2281  ring syz_ring=rAssure_SyzOrder(orig_ring, TRUE);
2282  rSetSyzComp(length,syz_ring);
2283  rChangeCurrRing(syz_ring);
2284  // we can use OPT_RETURN_SB only, if syz_ring==orig_ring,
2285  // therefore we disable OPT_RETURN_SB for modulo:
2286  // (see tr. #701)
2287  //if (TEST_OPT_RETURN_SB)
2288  // rSetSyzComp(IDELEMS(h2)+length, syz_ring);
2289  //else
2290  // rSetSyzComp(length, syz_ring);
2291  ideal s_temp;
2292 
2293  if (syz_ring != orig_ring)
2294  {
2295  s_temp = idrMoveR_NoSort(temp, orig_ring, syz_ring);
2296  }
2297  else
2298  {
2299  s_temp = temp;
2300  }
2301 
2302  idTest(s_temp);
2303  unsigned save_opt,save_opt2;
2304  SI_SAVE_OPT1(save_opt);
2305  SI_SAVE_OPT2(save_opt2);
2306  if (T==NULL) si_opt_1 |= Sy_bit(OPT_REDTAIL_SYZ);
2308  ideal s_temp1 = idGroebner(s_temp,length,alg);
2309  SI_RESTORE_OPT1(save_opt);
2310  SI_RESTORE_OPT2(save_opt2);
2311 
2312  //if (wtmp!=NULL) Print("output weights:");wtmp->show(1);PrintLn();
2313  if ((w!=NULL) && (*w !=NULL) && (wtmp!=NULL))
2314  {
2315  delete *w;
2316  *w=new intvec(IDELEMS(h2));
2317  for (i=0;i<IDELEMS(h2);i++)
2318  ((**w)[i])=(*wtmp)[i+length];
2319  }
2320  if (wtmp!=NULL) delete wtmp;
2321 
2322  if (T==NULL)
2323  {
2324  for (i=0;i<IDELEMS(s_temp1);i++)
2325  {
2326  if (s_temp1->m[i]!=NULL)
2327  {
2328  if (((int)pGetComp(s_temp1->m[i]))<=length)
2329  {
2330  p_Delete(&(s_temp1->m[i]),currRing);
2331  }
2332  else
2333  {
2334  p_Shift(&(s_temp1->m[i]),-length,currRing);
2335  }
2336  }
2337  }
2338  }
2339  else
2340  {
2341  *T=mpNew(IDELEMS(s_temp1),IDELEMS(h2));
2342  for (i=0;i<IDELEMS(s_temp1);i++)
2343  {
2344  if (s_temp1->m[i]!=NULL)
2345  {
2346  if (((int)pGetComp(s_temp1->m[i]))<=length)
2347  {
2348  do
2349  {
2350  p_LmDelete(&(s_temp1->m[i]),currRing);
2351  } while((int)pGetComp(s_temp1->m[i])<=length);
2352  poly q = prMoveR( s_temp1->m[i], syz_ring,orig_ring);
2353  s_temp1->m[i] = NULL;
2354  if (q!=NULL)
2355  {
2356  q=pReverse(q);
2357  do
2358  {
2359  poly p = q;
2360  long t=pGetComp(p);
2361  pIter(q);
2362  pNext(p) = NULL;
2363  pSetComp(p,0);
2364  pSetmComp(p);
2365  pTest(p);
2366  MATELEM(*T,(int)t-length,i) = pAdd(MATELEM(*T,(int)t-length,i),p);
2367  } while (q != NULL);
2368  }
2369  }
2370  else
2371  {
2372  p_Shift(&(s_temp1->m[i]),-length,currRing);
2373  }
2374  }
2375  }
2376  }
2377  s_temp1->rank = rk;
2378  idSkipZeroes(s_temp1);
2379 
2380  if (syz_ring!=orig_ring)
2381  {
2382  rChangeCurrRing(orig_ring);
2383  s_temp1 = idrMoveR_NoSort(s_temp1, syz_ring, orig_ring);
2384  rDelete(syz_ring);
2385  // Hmm ... here seems to be a memory leak
2386  // However, simply deleting it causes memory trouble
2387  // idDelete(&s_temp);
2388  }
2389  idTest(s_temp1);
2390  return s_temp1;
2391 }
static void p_LmDelete(poly p, const ring r)
Definition: p_polys.h:711
#define pTest(p)
Definition: polys.h:415

◆ idMultSect()

ideal idMultSect ( resolvente  arg,
int  length,
GbVariant  alg 
)

Definition at line 472 of file ideals.cc.

473 {
474  int i,j=0,k=0,l,maxrk=-1,realrki;
475  unsigned syzComp;
476  ideal bigmat,tempstd,result;
477  poly p;
478  int isIdeal=0;
479 
480  /* find 0-ideals and max rank -----------------------------------*/
481  for (i=0;i<length;i++)
482  {
483  if (!idIs0(arg[i]))
484  {
485  realrki=id_RankFreeModule(arg[i],currRing);
486  k++;
487  j += IDELEMS(arg[i]);
488  if (realrki>maxrk) maxrk = realrki;
489  }
490  else
491  {
492  if (arg[i]!=NULL)
493  {
494  return idInit(1,arg[i]->rank);
495  }
496  }
497  }
498  if (maxrk == 0)
499  {
500  isIdeal = 1;
501  maxrk = 1;
502  }
503  /* init -----------------------------------------------------------*/
504  j += maxrk;
505  syzComp = k*maxrk;
506 
507  ring orig_ring=currRing;
508  ring syz_ring=rAssure_SyzOrder(orig_ring,TRUE);
509  rSetSyzComp(syzComp,syz_ring);
510  rChangeCurrRing(syz_ring);
511 
512  bigmat = idInit(j,(k+1)*maxrk);
513  /* create unit matrices ------------------------------------------*/
514  for (i=0;i<maxrk;i++)
515  {
516  for (j=0;j<=k;j++)
517  {
518  p = pOne();
519  pSetComp(p,i+1+j*maxrk);
520  pSetmComp(p);
521  bigmat->m[i] = pAdd(bigmat->m[i],p);
522  }
523  }
524  /* enter given ideals ------------------------------------------*/
525  i = maxrk;
526  k = 0;
527  for (j=0;j<length;j++)
528  {
529  if (arg[j]!=NULL)
530  {
531  for (l=0;l<IDELEMS(arg[j]);l++)
532  {
533  if (arg[j]->m[l]!=NULL)
534  {
535  if (syz_ring==orig_ring)
536  bigmat->m[i] = pCopy(arg[j]->m[l]);
537  else
538  bigmat->m[i] = prCopyR(arg[j]->m[l], orig_ring,currRing);
539  p_Shift(&(bigmat->m[i]),k*maxrk+isIdeal,currRing);
540  i++;
541  }
542  }
543  k++;
544  }
545  }
546  /* std computation --------------------------------------------*/
547  if ((alg!=GbDefault)
548  && (alg!=GbGroebner)
549  && (alg!=GbModstd)
550  && (alg!=GbSlimgb)
551  && (alg!=GbStd))
552  {
553  WarnS("wrong algorithm for GB");
554  alg=GbDefault;
555  }
556  tempstd=idGroebner(bigmat,syzComp,alg);
557 
558  if(syz_ring!=orig_ring)
559  rChangeCurrRing(orig_ring);
560 
561  /* interprete result ----------------------------------------*/
562  result = idInit(IDELEMS(tempstd),maxrk);
563  k = 0;
564  for (j=0;j<IDELEMS(tempstd);j++)
565  {
566  if ((tempstd->m[j]!=NULL) && (__p_GetComp(tempstd->m[j],syz_ring)>syzComp))
567  {
568  if (syz_ring==orig_ring)
569  p = pCopy(tempstd->m[j]);
570  else
571  p = prCopyR(tempstd->m[j], syz_ring,currRing);
572  p_Shift(&p,-syzComp-isIdeal,currRing);
573  result->m[k] = p;
574  k++;
575  }
576  }
577  /* clean up ----------------------------------------------------*/
578  if(syz_ring!=orig_ring)
579  rChangeCurrRing(syz_ring);
580  idDelete(&tempstd);
581  if(syz_ring!=orig_ring)
582  {
583  rChangeCurrRing(orig_ring);
584  rDelete(syz_ring);
585  }
587  return result;
588 }
int m
Definition: cfEzgcd.cc:128
#define __p_GetComp(p, r)
Definition: monomials.h:63

◆ idPrepare()

static ideal idPrepare ( ideal  h1,
ideal  h11,
tHomog  hom,
int  syzcomp,
intvec **  w,
GbVariant  alg 
)
static

Definition at line 607 of file ideals.cc.

608 {
609  ideal h2,h22;
610  int j,k;
611  poly p,q;
612 
613  if (idIs0(h1)) return NULL;
615  if (h11!=NULL)
616  {
617  k = si_max(k,(int)id_RankFreeModule(h11,currRing));
618  h22=idCopy(h11);
619  }
620  h2=idCopy(h1);
621  int i = IDELEMS(h2);
622  if (h11!=NULL) i+=IDELEMS(h22);
623  if (k == 0)
624  {
625  id_Shift(h2,1,currRing);
626  if (h11!=NULL) id_Shift(h22,1,currRing);
627  k = 1;
628  }
629  if (syzcomp<k)
630  {
631  Warn("syzcomp too low, should be %d instead of %d",k,syzcomp);
632  syzcomp = k;
634  }
635  h2->rank = syzcomp+i;
636 
637  //if (hom==testHomog)
638  //{
639  // if(idHomIdeal(h1,currRing->qideal))
640  // {
641  // hom=TRUE;
642  // }
643  //}
644 
645  for (j=0; j<IDELEMS(h2); j++)
646  {
647  p = h2->m[j];
648  q = pOne();
649 #ifdef HAVE_SHIFTBBA
650  // non multiplicative variable
651  if (rIsLPRing(currRing))
652  {
653  pSetExp(q, currRing->isLPring - currRing->LPncGenCount + j + 1, 1);
654  p_Setm(q, currRing);
655  }
656 #endif
657  pSetComp(q,syzcomp+1+j);
658  pSetmComp(q);
659  if (p!=NULL)
660  {
661 #ifdef HAVE_SHIFTBBA
662  if (rIsLPRing(currRing))
663  {
664  h2->m[j] = pAdd(p, q);
665  }
666  else
667 #endif
668  {
669  while (pNext(p)) pIter(p);
670  p->next = q;
671  }
672  }
673  else
674  h2->m[j]=q;
675  }
676  if (h11!=NULL)
677  {
678  ideal h=id_SimpleAdd(h2,h22,currRing);
679  id_Delete(&h2,currRing);
680  id_Delete(&h22,currRing);
681  h2=h;
682  }
683 
684  idTest(h2);
685  #if 0
687  PrintS(" --------------before std------------------------\n");
688  ipPrint_MA0(TT,"T");
689  PrintLn();
690  idDelete((ideal*)&TT);
691  #endif
692 
693  if ((alg!=GbDefault)
694  && (alg!=GbGroebner)
695  && (alg!=GbModstd)
696  && (alg!=GbSlimgb)
697  && (alg!=GbStd))
698  {
699  WarnS("wrong algorithm for GB");
700  alg=GbDefault;
701  }
702 
703  ideal h3;
704  if (w!=NULL) h3=idGroebner(h2,syzcomp,alg,NULL,*w,hom);
705  else h3=idGroebner(h2,syzcomp,alg,NULL,NULL,hom);
706  return h3;
707 }
#define Warn
Definition: emacs.cc:77
ideal id_SimpleAdd(ideal h1, ideal h2, const ring R)
concat the lists h1 and h2 without zeros

◆ idPrepareStd()

static void idPrepareStd ( ideal  s_temp,
int  k 
)
static

Definition at line 1041 of file ideals.cc.

1042 {
1043  int j,rk=id_RankFreeModule(s_temp,currRing);
1044  poly p,q;
1045 
1046  if (rk == 0)
1047  {
1048  for (j=0; j<IDELEMS(s_temp); j++)
1049  {
1050  if (s_temp->m[j]!=NULL) pSetCompP(s_temp->m[j],1);
1051  }
1052  k = si_max(k,1);
1053  }
1054  for (j=0; j<IDELEMS(s_temp); j++)
1055  {
1056  if (s_temp->m[j]!=NULL)
1057  {
1058  p = s_temp->m[j];
1059  q = pOne();
1060  //pGetCoeff(q)=nInpNeg(pGetCoeff(q)); //set q to -1
1061  pSetComp(q,k+1+j);
1062  pSetmComp(q);
1063 #ifdef HAVE_SHIFTBBA
1064  // non multiplicative variable
1065  if (rIsLPRing(currRing))
1066  {
1067  pSetExp(q, currRing->isLPring - currRing->LPncGenCount + j + 1, 1);
1068  p_Setm(q, currRing);
1069  s_temp->m[j] = pAdd(p, q);
1070  }
1071  else
1072 #endif
1073  {
1074  while (pNext(p)) pIter(p);
1075  pNext(p) = q;
1076  }
1077  }
1078  }
1079  s_temp->rank = k+IDELEMS(s_temp);
1080 }
#define pSetCompP(a, i)
Definition: polys.h:303

◆ idQuot()

ideal idQuot ( ideal  h1,
ideal  h2,
BOOLEAN  h1IsStb,
BOOLEAN  resultIsIdeal 
)

Definition at line 1488 of file ideals.cc.

1489 {
1490  // first check for special case h1:(0)
1491  if (idIs0(h2))
1492  {
1493  ideal res;
1494  if (resultIsIdeal)
1495  {
1496  res = idInit(1,1);
1497  res->m[0] = pOne();
1498  }
1499  else
1500  res = idFreeModule(h1->rank);
1501  return res;
1502  }
1503  int i, kmax;
1504  BOOLEAN addOnlyOne=TRUE;
1505  tHomog hom=isNotHomog;
1506  intvec * weights1;
1507 
1508  ideal s_h4 = idInitializeQuot (h1,h2,h1IsStb,&addOnlyOne,&kmax);
1509 
1510  hom = (tHomog)idHomModule(s_h4,currRing->qideal,&weights1);
1511 
1512  ring orig_ring=currRing;
1513  ring syz_ring=rAssure_SyzOrder(orig_ring,TRUE);
1514  rSetSyzComp(kmax-1,syz_ring);
1515  rChangeCurrRing(syz_ring);
1516  if (orig_ring!=syz_ring)
1517  // s_h4 = idrMoveR_NoSort(s_h4,orig_ring, syz_ring);
1518  s_h4 = idrMoveR(s_h4,orig_ring, syz_ring);
1519  idTest(s_h4);
1520 
1521  #if 0
1522  matrix m=idModule2Matrix(idCopy(s_h4));
1523  PrintS("start:\n");
1524  ipPrint_MA0(m,"Q");
1525  idDelete((ideal *)&m);
1526  PrintS("last elem:");wrp(s_h4->m[IDELEMS(s_h4)-1]);PrintLn();
1527  #endif
1528 
1529  ideal s_h3;
1530  BITSET old_test1;
1531  SI_SAVE_OPT1(old_test1);
1533  if (addOnlyOne)
1534  {
1536  s_h3 = kStd(s_h4,currRing->qideal,hom,&weights1,NULL,0/*kmax-1*/,IDELEMS(s_h4)-1);
1537  }
1538  else
1539  {
1540  s_h3 = kStd(s_h4,currRing->qideal,hom,&weights1,NULL,kmax-1);
1541  }
1542  SI_RESTORE_OPT1(old_test1);
1543 
1544  #if 0
1545  // only together with the above debug stuff
1546  idSkipZeroes(s_h3);
1547  m=idModule2Matrix(idCopy(s_h3));
1548  Print("result, kmax=%d:\n",kmax);
1549  ipPrint_MA0(m,"S");
1550  idDelete((ideal *)&m);
1551  #endif
1552 
1553  idTest(s_h3);
1554  if (weights1!=NULL) delete weights1;
1555  idDelete(&s_h4);
1556 
1557  for (i=0;i<IDELEMS(s_h3);i++)
1558  {
1559  if ((s_h3->m[i]!=NULL) && (pGetComp(s_h3->m[i])>=kmax))
1560  {
1561  if (resultIsIdeal)
1562  p_Shift(&s_h3->m[i],-kmax,currRing);
1563  else
1564  p_Shift(&s_h3->m[i],-kmax+1,currRing);
1565  }
1566  else
1567  p_Delete(&s_h3->m[i],currRing);
1568  }
1569  if (resultIsIdeal)
1570  s_h3->rank = 1;
1571  else
1572  s_h3->rank = h1->rank;
1573  if(syz_ring!=orig_ring)
1574  {
1575  rChangeCurrRing(orig_ring);
1576  s_h3 = idrMoveR_NoSort(s_h3, syz_ring, orig_ring);
1577  rDelete(syz_ring);
1578  }
1579  idSkipZeroes(s_h3);
1580  idTest(s_h3);
1581  return s_h3;
1582 }
static ideal idInitializeQuot(ideal h1, ideal h2, BOOLEAN h1IsStb, BOOLEAN *addOnlyOne, int *kkmax)
Definition: ideals.cc:1383
#define OPT_SB_1
Definition: options.h:94
void wrp(poly p)
Definition: polys.h:310

◆ idSect()

ideal idSect ( ideal  h1,
ideal  h2,
GbVariant  alg 
)

Definition at line 316 of file ideals.cc.

317 {
318  int i,j,k;
319  unsigned length;
320  int flength = id_RankFreeModule(h1,currRing);
321  int slength = id_RankFreeModule(h2,currRing);
322  int rank=si_max(h1->rank,h2->rank);
323  if ((idIs0(h1)) || (idIs0(h2))) return idInit(1,rank);
324 
325  BITSET save_opt;
326  SI_SAVE_OPT1(save_opt);
328 
329  ideal first,second,temp,temp1,result;
330  poly p,q;
331 
332  if (IDELEMS(h1)<IDELEMS(h2))
333  {
334  first = h1;
335  second = h2;
336  }
337  else
338  {
339  first = h2;
340  second = h1;
341  int t=flength; flength=slength; slength=t;
342  }
343  length = si_max(flength,slength);
344  if (length==0)
345  {
346  if ((currRing->qideal==NULL)
347  && (currRing->OrdSgn==1)
348  && (!rIsPluralRing(currRing))
350  return idSectWithElim(first,second,alg);
351  else length = 1;
352  }
353  if (TEST_OPT_PROT) PrintS("intersect by syzygy methods\n");
354  j = IDELEMS(first);
355 
356  ring orig_ring=currRing;
357  ring syz_ring=rAssure_SyzOrder(orig_ring,TRUE);
358  rSetSyzComp(length,syz_ring);
359  rChangeCurrRing(syz_ring);
360 
361  while ((j>0) && (first->m[j-1]==NULL)) j--;
362  temp = idInit(j /*IDELEMS(first)*/+IDELEMS(second),length+j);
363  k = 0;
364  for (i=0;i<j;i++)
365  {
366  if (first->m[i]!=NULL)
367  {
368  if (syz_ring==orig_ring)
369  temp->m[k] = pCopy(first->m[i]);
370  else
371  temp->m[k] = prCopyR(first->m[i], orig_ring, syz_ring);
372  q = pOne();
373  pSetComp(q,i+1+length);
374  pSetmComp(q);
375  if (flength==0) p_Shift(&(temp->m[k]),1,currRing);
376  p = temp->m[k];
377  while (pNext(p)!=NULL) pIter(p);
378  pNext(p) = q;
379  k++;
380  }
381  }
382  for (i=0;i<IDELEMS(second);i++)
383  {
384  if (second->m[i]!=NULL)
385  {
386  if (syz_ring==orig_ring)
387  temp->m[k] = pCopy(second->m[i]);
388  else
389  temp->m[k] = prCopyR(second->m[i], orig_ring,currRing);
390  if (slength==0) p_Shift(&(temp->m[k]),1,currRing);
391  k++;
392  }
393  }
394  intvec *w=NULL;
395 
396  if ((alg!=GbDefault)
397  && (alg!=GbGroebner)
398  && (alg!=GbModstd)
399  && (alg!=GbSlimgb)
400  && (alg!=GbStd))
401  {
402  WarnS("wrong algorithm for GB");
403  alg=GbDefault;
404  }
405  temp1=idGroebner(temp,length,alg);
406 
407  if(syz_ring!=orig_ring)
408  rChangeCurrRing(orig_ring);
409 
410  result = idInit(IDELEMS(temp1),rank);
411  j = 0;
412  for (i=0;i<IDELEMS(temp1);i++)
413  {
414  if ((temp1->m[i]!=NULL)
415  && (__p_GetComp(temp1->m[i],syz_ring)>length))
416  {
417  if(syz_ring==orig_ring)
418  {
419  p = temp1->m[i];
420  }
421  else
422  {
423  p = prMoveR(temp1->m[i], syz_ring,orig_ring);
424  }
425  temp1->m[i]=NULL;
426  while (p!=NULL)
427  {
428  q = pNext(p);
429  pNext(p) = NULL;
430  k = pGetComp(p)-1-length;
431  pSetComp(p,0);
432  pSetmComp(p);
433  /* Warning! multiply only from the left! it's very important for Plural */
434  result->m[j] = pAdd(result->m[j],pMult(p,pCopy(first->m[k])));
435  p = q;
436  }
437  j++;
438  }
439  }
440  if(syz_ring!=orig_ring)
441  {
442  rChangeCurrRing(syz_ring);
443  idDelete(&temp1);
444  rChangeCurrRing(orig_ring);
445  rDelete(syz_ring);
446  }
447  else
448  {
449  idDelete(&temp1);
450  }
451 
453  SI_RESTORE_OPT1(save_opt);
454  if (TEST_OPT_RETURN_SB)
455  {
456  w=NULL;
457  temp1=kStd(result,currRing->qideal,testHomog,&w);
458  if (w!=NULL) delete w;
459  idDelete(&result);
460  idSkipZeroes(temp1);
461  return temp1;
462  }
463  //else
464  // temp1=kInterRed(result,currRing->qideal);
465  return result;
466 }
static ideal idSectWithElim(ideal h1, ideal h2, GbVariant alg)
Definition: ideals.cc:133
#define TEST_V_INTERSECT_ELIM
Definition: options.h:142
#define TEST_V_INTERSECT_SYZ
Definition: options.h:143
#define pMult(p, q)
Definition: polys.h:207

◆ idSectWithElim()

static ideal idSectWithElim ( ideal  h1,
ideal  h2,
GbVariant  alg 
)
static

Definition at line 133 of file ideals.cc.

135 {
136  if (TEST_OPT_PROT) PrintS("intersect by elimination method\n");
137  assume(!idIs0(h1));
138  assume(!idIs0(h2));
139  assume(IDELEMS(h1)<=IDELEMS(h2));
142  // add a new variable:
143  int j;
144  ring origRing=currRing;
145  ring r=rCopy0(origRing);
146  r->N++;
147  r->block0[0]=1;
148  r->block1[0]= r->N;
149  omFree(r->order);
150  r->order=(rRingOrder_t*)omAlloc0(3*sizeof(rRingOrder_t));
151  r->order[0]=ringorder_dp;
152  r->order[1]=ringorder_C;
153  char **names=(char**)omAlloc0(rVar(r) * sizeof(char_ptr));
154  for (j=0;j<r->N-1;j++) names[j]=r->names[j];
155  names[r->N-1]=omStrDup("@");
156  omFree(r->names);
157  r->names=names;
158  rComplete(r,TRUE);
159  // fetch h1, h2
160  ideal h;
161  h1=idrCopyR(h1,origRing,r);
162  h2=idrCopyR(h2,origRing,r);
163  // switch to temp. ring r
164  rChangeCurrRing(r);
165  // create 1-t, t
166  poly omt=p_One(currRing);
167  p_SetExp(omt,r->N,1,currRing);
168  p_Setm(omt,currRing);
169  poly t=p_Copy(omt,currRing);
170  omt=p_Neg(omt,currRing);
171  omt=p_Add_q(omt,pOne(),currRing);
172  // compute (1-t)*h1
173  h1=(ideal)mp_MultP((matrix)h1,omt,currRing);
174  // compute t*h2
175  h2=(ideal)mp_MultP((matrix)h2,pCopy(t),currRing);
176  // (1-t)h1 + t*h2
177  h=idInit(IDELEMS(h1)+IDELEMS(h2),1);
178  int l;
179  for (l=IDELEMS(h1)-1; l>=0; l--)
180  {
181  h->m[l] = h1->m[l]; h1->m[l]=NULL;
182  }
183  j=IDELEMS(h1);
184  for (l=IDELEMS(h2)-1; l>=0; l--)
185  {
186  h->m[l+j] = h2->m[l]; h2->m[l]=NULL;
187  }
188  idDelete(&h1);
189  idDelete(&h2);
190  // eliminate t:
191  ideal res=idElimination(h,t,NULL,alg);
192  // cleanup
193  idDelete(&h);
194  pDelete(&t);
195  if (res!=NULL) res=idrMoveR(res,r,origRing);
196  rChangeCurrRing(origRing);
197  rDelete(r);
198  return res;
199 }
ideal idElimination(ideal h1, poly delVar, intvec *hilb, GbVariant alg)
Definition: ideals.cc:1587
matrix mp_MultP(matrix a, poly p, const ring R)
multiply a matrix 'a' by a poly 'p', destroy the args
Definition: matpol.cc:148
#define assume(x)
Definition: mod2.h:387
#define omStrDup(s)
Definition: omAllocDecl.h:263
poly p_One(const ring r)
Definition: p_polys.cc:1308
static poly p_Neg(poly p, const ring r)
Definition: p_polys.h:1067
static poly p_Add_q(poly p, poly q, const ring r)
Definition: p_polys.h:896
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent @Note: VarOffset encodes the position in p->exp
Definition: p_polys.h:488
char * char_ptr
Definition: structs.h:58

◆ idSeries()

ideal idSeries ( int  n,
ideal  M,
matrix  U,
intvec w 
)

Definition at line 2105 of file ideals.cc.

2106 {
2107  for(int i=IDELEMS(M)-1;i>=0;i--)
2108  {
2109  if(U==NULL)
2110  M->m[i]=pSeries(n,M->m[i],NULL,w);
2111  else
2112  {
2113  M->m[i]=pSeries(n,M->m[i],MATELEM(U,i+1,i+1),w);
2114  MATELEM(U,i+1,i+1)=NULL;
2115  }
2116  }
2117  if(U!=NULL)
2118  idDelete((ideal*)&U);
2119  return M;
2120 }
#define pSeries(n, p, u, w)
Definition: polys.h:372
#define M
Definition: sirandom.c:25

◆ idSort_qsort()

void idSort_qsort ( poly_sort id_sort,
int  idsize 
)

Definition at line 2931 of file ideals.cc.

2932 {
2933  qsort(id_sort, idsize, sizeof(poly_sort), pCompare_qsort);
2934 }
int pCompare_qsort(const void *a, const void *b)
Definition: ideals.cc:2926

◆ idSyzygies()

ideal idSyzygies ( ideal  h1,
tHomog  h,
intvec **  w,
BOOLEAN  setSyzComp,
BOOLEAN  setRegularity,
int *  deg,
GbVariant  alg 
)

Definition at line 830 of file ideals.cc.

832 {
833  ideal s_h1;
834  int j, k, length=0,reg;
835  BOOLEAN isMonomial=TRUE;
836  int ii, idElemens_h1;
837 
838  assume(h1 != NULL);
839 
840  idElemens_h1=IDELEMS(h1);
841 #ifdef PDEBUG
842  for(ii=0;ii<idElemens_h1 /*IDELEMS(h1)*/;ii++) pTest(h1->m[ii]);
843 #endif
844  if (idIs0(h1))
845  {
846  ideal result=idFreeModule(idElemens_h1/*IDELEMS(h1)*/);
847  return result;
848  }
849  int slength=(int)id_RankFreeModule(h1,currRing);
850  k=si_max(1,slength /*id_RankFreeModule(h1)*/);
851 
852  assume(currRing != NULL);
853  ring orig_ring=currRing;
854  ring syz_ring=rAssure_SyzComp(orig_ring,TRUE);
855  if (setSyzComp) rSetSyzComp(k,syz_ring);
856 
857  if (orig_ring != syz_ring)
858  {
859  rChangeCurrRing(syz_ring);
860  s_h1=idrCopyR_NoSort(h1,orig_ring,syz_ring);
861  }
862  else
863  {
864  s_h1 = h1;
865  }
866 
867  idTest(s_h1);
868 
869  BITSET save_opt;
870  SI_SAVE_OPT1(save_opt);
872 
873  ideal s_h3=idPrepare(s_h1,NULL,h,k,w,alg); // main (syz) GB computation
874 
875  SI_RESTORE_OPT1(save_opt);
876 
877  if (orig_ring != syz_ring)
878  {
879  idDelete(&s_h1);
880  for (j=0; j<IDELEMS(s_h3); j++)
881  {
882  if (s_h3->m[j] != NULL)
883  {
884  if (p_MinComp(s_h3->m[j],syz_ring) > k)
885  p_Shift(&s_h3->m[j], -k,syz_ring);
886  else
887  p_Delete(&s_h3->m[j],syz_ring);
888  }
889  }
890  idSkipZeroes(s_h3);
891  s_h3->rank -= k;
892  rChangeCurrRing(orig_ring);
893  s_h3 = idrMoveR_NoSort(s_h3, syz_ring, orig_ring);
894  rDelete(syz_ring);
895  #ifdef HAVE_PLURAL
896  if (rIsPluralRing(orig_ring))
897  {
898  id_DelMultiples(s_h3,orig_ring);
899  idSkipZeroes(s_h3);
900  }
901  #endif
902  idTest(s_h3);
903  return s_h3;
904  }
905 
906  ideal e = idInit(IDELEMS(s_h3), s_h3->rank);
907 
908  for (j=IDELEMS(s_h3)-1; j>=0; j--)
909  {
910  if (s_h3->m[j] != NULL)
911  {
912  if (p_MinComp(s_h3->m[j],syz_ring) <= k)
913  {
914  e->m[j] = s_h3->m[j];
915  isMonomial=isMonomial && (pNext(s_h3->m[j])==NULL);
916  p_Delete(&pNext(s_h3->m[j]),syz_ring);
917  s_h3->m[j] = NULL;
918  }
919  }
920  }
921 
922  idSkipZeroes(s_h3);
923  idSkipZeroes(e);
924 
925  if ((deg != NULL)
926  && (!isMonomial)
928  && (setRegularity)
929  && (h==isHomog)
930  && (!rIsPluralRing(currRing))
931  && (!rField_is_Ring(currRing))
932  )
933  {
934  assume(orig_ring==syz_ring);
935  ring dp_C_ring = rAssure_dp_C(syz_ring); // will do rChangeCurrRing later
936  if (dp_C_ring != syz_ring)
937  {
938  rChangeCurrRing(dp_C_ring);
939  e = idrMoveR_NoSort(e, syz_ring, dp_C_ring);
940  }
942  intvec * dummy = syBetti(res,length,&reg, *w);
943  *deg = reg+2;
944  delete dummy;
945  for (j=0;j<length;j++)
946  {
947  if (res[j]!=NULL) idDelete(&(res[j]));
948  }
949  omFreeSize((ADDRESS)res,length*sizeof(ideal));
950  idDelete(&e);
951  if (dp_C_ring != orig_ring)
952  {
953  rChangeCurrRing(orig_ring);
954  rDelete(dp_C_ring);
955  }
956  }
957  else
958  {
959  idDelete(&e);
960  }
961  assume(orig_ring==currRing);
962  idTest(s_h3);
963  if (currRing->qideal != NULL)
964  {
965  ideal ts_h3=kStd(s_h3,currRing->qideal,h,w);
966  idDelete(&s_h3);
967  s_h3 = ts_h3;
968  }
969  return s_h3;
970 }
ideal * resolvente
Definition: ideals.h:18
#define TEST_OPT_NOTREGULARITY
Definition: options.h:119
static long p_MinComp(poly p, ring lmRing, ring tailRing)
Definition: p_polys.h:313
ring rAssure_SyzComp(const ring r, BOOLEAN complete)
Definition: ring.cc:4426
ring rAssure_dp_C(const ring r)
Definition: ring.cc:4930
void id_DelMultiples(ideal id, const ring r)
ideal id = (id[i]), c any unit if id[i] = c*id[j] then id[j] is deleted for j > i
intvec * syBetti(resolvente res, int length, int *regularity, intvec *weights, BOOLEAN tomin, int *row_shift)
Definition: syz.cc:770
resolvente sySchreyerResolvente(ideal arg, int maxlength, int *length, BOOLEAN isMonomial=FALSE, BOOLEAN notReplace=FALSE)
Definition: syz0.cc:855

◆ idTestHomModule()

BOOLEAN idTestHomModule ( ideal  m,
ideal  Q,
intvec w 
)

Definition at line 2053 of file ideals.cc.

2054 {
2055  if ((Q!=NULL) && (!idHomIdeal(Q,NULL))) { PrintS(" Q not hom\n"); return FALSE;}
2056  if (idIs0(m)) return TRUE;
2057 
2058  int cmax=-1;
2059  int i;
2060  poly p=NULL;
2061  int length=IDELEMS(m);
2062  polyset P=m->m;
2063  for (i=length-1;i>=0;i--)
2064  {
2065  p=P[i];
2066  if (p!=NULL) cmax=si_max(cmax,(int)pMaxComp(p)+1);
2067  }
2068  if (w != NULL)
2069  if (w->length()+1 < cmax)
2070  {
2071  // Print("length: %d - %d \n", w->length(),cmax);
2072  return FALSE;
2073  }
2074 
2075  if(w!=NULL)
2077 
2078  for (i=length-1;i>=0;i--)
2079  {
2080  p=P[i];
2081  if (p!=NULL)
2082  {
2083  int d=currRing->pFDeg(p,currRing);
2084  loop
2085  {
2086  pIter(p);
2087  if (p==NULL) break;
2088  if (d!=currRing->pFDeg(p,currRing))
2089  {
2090  //pWrite(q); wrp(p); Print(" -> %d - %d\n",d,pFDeg(p,currRing));
2091  if(w!=NULL)
2093  return FALSE;
2094  }
2095  }
2096  }
2097  }
2098 
2099  if(w!=NULL)
2101 
2102  return TRUE;
2103 }
static BOOLEAN idHomIdeal(ideal id, ideal Q=NULL)
Definition: ideals.h:91
void p_SetModDeg(intvec *w, ring r)
Definition: p_polys.cc:3743
#define pMaxComp(p)
Definition: polys.h:299
poly * polyset
Definition: polys.h:259

◆ pCompare_qsort()

int pCompare_qsort ( const void *  a,
const void *  b 
)

Definition at line 2926 of file ideals.cc.

2927 {
2928  return (p_Compare(((poly_sort *)a)->p, ((poly_sort *)b)->p,currRing));
2929 }
int p_Compare(const poly a, const poly b, const ring R)
Definition: p_polys.cc:4932

◆ syGetAlgorithm()

GbVariant syGetAlgorithm ( char *  n,
const ring  r,
const  ideal 
)

Definition at line 3138 of file ideals.cc.

3139 {
3140  GbVariant alg=GbDefault;
3141  if (strcmp(n,"default")==0) alg=GbDefault;
3142  else if (strcmp(n,"slimgb")==0) alg=GbSlimgb;
3143  else if (strcmp(n,"std")==0) alg=GbStd;
3144  else if (strcmp(n,"sba")==0) alg=GbSba;
3145  else if (strcmp(n,"singmatic")==0) alg=GbSingmatic;
3146  else if (strcmp(n,"groebner")==0) alg=GbGroebner;
3147  else if (strcmp(n,"modstd")==0) alg=GbModstd;
3148  else if (strcmp(n,"ffmod")==0) alg=GbFfmod;
3149  else if (strcmp(n,"nfmod")==0) alg=GbNfmod;
3150  else if (strcmp(n,"std:sat")==0) alg=GbStdSat;
3151  else Warn(">>%s<< is an unknown algorithm",n);
3152 
3153  if (alg==GbSlimgb) // test conditions for slimgb
3154  {
3155  if(rHasGlobalOrdering(r)
3156  &&(!rIsNCRing(r))
3157  &&(r->qideal==NULL)
3158  &&(!rField_is_Ring(r)))
3159  {
3160  return GbSlimgb;
3161  }
3162  if (TEST_OPT_PROT)
3163  WarnS("requires: coef:field, commutative, global ordering, not qring");
3164  }
3165  else if (alg==GbSba) // cond. for sba
3166  {
3167  if(rField_is_Domain(r)
3168  &&(!rIsNCRing(r))
3169  &&(rHasGlobalOrdering(r)))
3170  {
3171  return GbSba;
3172  }
3173  if (TEST_OPT_PROT)
3174  WarnS("requires: coef:domain, commutative, global ordering");
3175  }
3176  else if (alg==GbGroebner) // cond. for groebner
3177  {
3178  return GbGroebner;
3179  }
3180  else if(alg==GbModstd) // cond for modstd: Q or Q(a)
3181  {
3182  if(ggetid("modStd")==NULL)
3183  {
3184  WarnS(">>modStd<< not found");
3185  }
3186  else if(rField_is_Q(r)
3187  &&(!rIsNCRing(r))
3188  &&(rHasGlobalOrdering(r)))
3189  {
3190  return GbModstd;
3191  }
3192  if (TEST_OPT_PROT)
3193  WarnS("requires: coef:QQ, commutative, global ordering");
3194  }
3195  else if(alg==GbStdSat) // cond for std:sat: 2 blocks of variables
3196  {
3197  if(ggetid("satstd")==NULL)
3198  {
3199  WarnS(">>satstd<< not found");
3200  }
3201  else
3202  {
3203  return GbStdSat;
3204  }
3205  }
3206 
3207  return GbStd; // no conditions for std
3208 }
GbVariant
Definition: ideals.h:119
@ GbFfmod
Definition: ideals.h:128
@ GbNfmod
Definition: ideals.h:129
@ GbSingmatic
Definition: ideals.h:131
idhdl ggetid(const char *n)
Definition: ipid.cc:571
static BOOLEAN rField_is_Domain(const ring r)
Definition: ring.h:492
static BOOLEAN rField_is_Q(const ring r)
Definition: ring.h:511
static BOOLEAN rIsNCRing(const ring r)
Definition: ring.h:421

Variable Documentation

◆ id_satstdSaturatingVariables

STATIC_VAR int* id_satstdSaturatingVariables =NULL

Definition at line 2977 of file ideals.cc.