
autoclasstoc
Release 1.3.0

unknown

Mar 02, 2022





GETTING STARTED

1 Advanced Usage 3
1.1 A TOC for every class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Custom sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Custom CSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Getting Help 9

3 Third-Party Projects 11

4 Restructured Text 13

5 Sphinx Configuration 15

6 Python API 17
6.1 autoclasstoc.Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.2 autoclasstoc.is_method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.3 autoclasstoc.is_data_attr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.4 autoclasstoc.is_public . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.5 autoclasstoc.is_private . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.6 autoclasstoc.is_special . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.7 autoclasstoc.utils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.8 autoclasstoc.nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.9 autoclasstoc.ConfigError . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Python Module Index 25

Index 27

i



ii



autoclasstoc, Release 1.3.0

It’s surprisingly difficult to document large Python classes in a way that’s easy for users to navigate. Most projects use
the autodoc Sphinx plugin, which simply puts the complete documentation for each class member one after another.
While this does fully document the class, it doesn’t give the user a quick way to see everything the class can do. This
makes classes of even moderate complexity difficult to navigate. It also encourages projects to be stingy about which
class members to include in the documentation (e.g. excluding special methods, inherited methods, private methods,
and/or undocumented methods), to the further detriment of the user.

What’s needed is for each class to have a succinct table of contents (TOC) that:

• Is organized into sections that will be meaningful to the user. Different projects and classes may call for different
sections, e.g. public/private methods, methods that share a decorator, methods with a common prefix, etc.

• Includes every method of the class (so that the documentation is complete), while still making it easy for the
user to get a sense for what the class does and find what they’re looking for.

• Collapses inherited methods. Complex classes in particular can inherit a lot of methods from their parent classes,
and while these methods should be present in the TOC (since they’re part of the class), collapsing them makes
it easier for the user to grok the functionality provided by the class itself.

autoclasstoc provides a new Restructured Text directive that is all of these things. It also works well with
autodoc and autogen, and should be easy to incorporate into any existing project.

GETTING STARTED 1

https://pypi.python.org/pypi/autoclasstoc
https://pypi.python.org/pypi/autoclasstoc
https://autoclasstoc.readthedocs.io/en/latest/?badge=latest


autoclasstoc, Release 1.3.0

2 GETTING STARTED



CHAPTER

ONE

ADVANCED USAGE

The following topics may be relevant when working on real-world documentation projects, which often demand a
greater level of customization.

1.1 A TOC for every class

It is also possible to use autoclasstoc in auto-generated API documentation, i.e. where all of the classes in your
project are documented without you having to explicitly write an autoclass directive for each one. The way to
do this is to use the sphinx.ext.autosummary extension with a custom Jinja template for classes, as detailed
below:

1. Configure the sphinx.ext.autosummary extension to automatically generate stub files each time the doc-
umentation is built:

Listing 1: conf.py

autosummary_generate = True

Alternatively, you could generate stub files yourself by running the autogen command when necessary (after
completing steps 2 and 3 below). I find this less convenient, but it might be better if you intend to edit the stub
files by hand:

$ sphinx-autogen -t _templates path/to/doc/with/autosummary.rst

2. Add an autosummary directive with the :toctree: and :recursive: options to your documentation.
Anywhere will work, but index.rst is a common choice:

Listing 2: index.rst

.. autosummary::
:toctree: path/to/directory/for/autogenerated/files
:recursive:

module.to.document

3. Provide a custom Jinja template for formatting class stub files. The purpose of this template is to specify that
autoclasstoc should be used for each class:

Listing 3: _templates/autosummary/class.rst

{{ fullname | escape | underline}}

(continues on next page)

3

https://www.sphinx-doc.org/en/master/usage/extensions/autosummary.html
https://www.sphinx-doc.org/en/master/usage/extensions/autosummary.html
https://jinja.palletsprojects.com/


autoclasstoc, Release 1.3.0

(continued from previous page)

.. currentmodule:: {{ module }}

.. autoclass:: {{ objname }}
:members:
:undoc-members:
:special-members:
:private-members:
:inherited-members:
:show-inheritance:

.. autoclasstoc::

Note that the name of the _templates directory depends on the value of the templates_path setting in
conf.py.

1.2 Custom sections

By default, autoclasstoc divides the TOC into sections based whether or not attributes are methods, and whether
or not they are public. This is a reasonable default, but for many projects it may make sense to add custom sections
specific to the idioms of that project. Fortunately, this is easy to configure. The basic steps are:

1. Define new autoclasstoc.Section subclasses.

2. Reference the subclasses either in conf.py or in the documentation itself.

This approach is very powerful, because the Section class controls all aspects of defining and formatting the TOC
sections, and its subclasses can overwrite any of that behavior. Below are some specific examples showing how custom
sections can be configured:

1.2.1 Based on name

Categorizing attributes based on their names is convenient, because it doesn’t require making any changes or annota-
tions to the code itself. For this example, we’ll make a custom “Event Handlers” section that will consist of methods
that begin with the prefix “on_”, e.g. on_mouse_down() or on_key_up().

The first step is to define a new Section subclass with the following attributes:

• key: used to include or exclude the section from class TOCs.

• title: how the section will be labeled in the documentation.

• predicate(): which attributes to include in the section.

Listing 4: conf.py

from autoclasstoc import Section, is_method

class EventHandlers(Section):
key = 'event-handlers'
title = "Event Handlers:"

def predicate(self, name, attr, meta):
return is_method(name, attr) and name.startswith('on_')

We also have to redefine the “Public Methods” section, so that it doesn’t include the event handlers (as it otherwise
would):

4 Chapter 1. Advanced Usage



autoclasstoc, Release 1.3.0

Listing 5: conf.py

from autoclasstoc import PublicMethods

class RemainingPublicMethods(PublicMethods):

def predicate(self, name, attr, meta):
return super().predicate(name, attr, meta) and not name.startswith('on_')

Finally, we need to specify that our new sections should be used by default (and what order they should go in):

Listing 6: conf.py

autoclasstoc_sections = [
'event-handlers',
'public-methods',
'private-methods',

]

1.2.2 Based on decorator

A more explicit way to categorize methods is to use a decorator to label methods that belong to a particular section.
This approach only is only applicable to methods and inner classes (because data attributes cannot be decorated), but is
easy to implement. For this example, we’ll make a section for “Read Only” methods that are identified by a decorator:

The first step is to write a decorator to label read-only methods:

def read_only(f):
f.__readonly__ = True
return f

class MyClass:

@read_only
def do_nothing(self):

pass

Next, we have to define Section subclasses that are aware of the decorator:

Listing 7: conf.py

from autoclasstoc import Section

class ReadOnlySection(Section):
key = 'read-only'
title = "Read-Only Methods:"

def predicate(self, name, attr, meta):
return getattr(attr, '__readonly__', False)

class ReadWriteSection(Section):
key = 'read-write'
title = "Read/Write Methods:"

def predicate(self, name, attr, meta):
return not getattr(attr, '__readonly__', False)

(continues on next page)

1.2. Custom sections 5



autoclasstoc, Release 1.3.0

(continued from previous page)

autoclasstoc_sections = [
'read-only',
'read-write',

]

Note that this example removes the distinction between private and public methods, so both the “Read-Only” and
“Read/Write” sections will contain public and private methods.

1.2.3 Based on :meta: fields

With sphinx.ext.autodoc, it’s possible to describe how an object should be documented by including :meta:
fields in that object’s docstring. autoclasstoc automatically parses these fields and provides them as an argument
to predicate(), so they can be easily used to categorize attributes. As in the previous example, we’ll make a
custom section for read-only methods. The snippet below shows how such a method might be identified using a meta
field:

class MyClass:

def do_nothing(self):
"""
This method doesn't do anything.

:meta read-only:
"""
pass

These meta fields are parsed into a dictionary such that :meta key: value would give {'key':
'value'}. This dictionary is provided to the predicate() method via the meta argument:

Listing 8: conf.py

from autoclasstoc import Section

class ReadOnlySection(Section):
key = 'read-only'
title = "Read-Only Methods:"

def predicate(self, name, attr, meta):
return 'read-only' in meta

class ReadWriteSection(Section):
key = 'read-write'
title = "Read/Write Methods:"

def predicate(self, name, attr, meta):
return 'read-only' not in meta

autoclasstoc_sections = [
'read-only',
'read-write',

]

6 Chapter 1. Advanced Usage

https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html


autoclasstoc, Release 1.3.0

1.3 Custom CSS

All of the HTML elements generated by autoclasstoc are contained in a <div> with class autoclasstoc.
This can be used to select and style the elements in the class TOC. Note that the plugin includes some default rules to
control the spacing around the <details> elements that contain TOCs for inherited attributes.

1.3. Custom CSS 7



autoclasstoc, Release 1.3.0

8 Chapter 1. Advanced Usage



CHAPTER

TWO

GETTING HELP

If you find a bug, or need help getting autoclasstoc to work, please open a new issue on Github. Pull requests are
also welcome!

9

https://github.com/kalekundert/autoclasstoc/issues
https://github.com/kalekundert/autoclasstoc/pulls


autoclasstoc, Release 1.3.0

10 Chapter 2. Getting Help



CHAPTER

THREE

THIRD-PARTY PROJECTS

Below are links to third-party projects that use autoclasstoc in their documentation. Hopefully these examples
are useful both to show what autoclasstoc looks like “in the wild”, and to provide inspiration for your own
documentation:

• Glooey

• KXG Game Engine

11

https://glooey.readthedocs.io/en/latest/
https://kxg-game-engine.readthedocs.io/en/latest/


autoclasstoc, Release 1.3.0

12 Chapter 3. Third-Party Projects



CHAPTER

FOUR

RESTRUCTURED TEXT

The following directive can be used in any restructured text file:

.. autoclasstoc:: [qualified class name]
Create a table of contents (TOC) for the given Python class.

The TOC contains a link to each method defined in the given class. By default, the links are organized into
four groups: “Public Attributes”, “Public Methods”, “Private Attributes”, and “Private Methods”. Public at-
tributes/methods are those with names that either don’t begin with an underscore or begin and end with two
underscores (i.e. “dunder methods”). Every other attribute/method is private. It’s easy to define custom sec-
tions; see Advanced Usage for more details.

In addition to attributes directly defined in the given class, the TOC will also include links to inherited attributes.
These links are grouped by the class they are inherited from, and are collapsed by default to keep the TOC
succinct.

The [qualified class name] argument is optional if this directive occurs within an autoclass or
a py:class directive (in which case the class name can be inferred from the context). If this argument is
provided, it must be the full name of the class, in the same manner expected by autoclass.

:sections:
A comma-separated list of sections to include in the class TOC. If specified, this supercedes the
autoclasstoc_sections setting from conf.py.

:exclude-sections:
A comma-separated list of sections to exclude from the class TOC. This can be used in conjunction with
the :sections: option above. No sections are excluded by default.

Note: The “class TOCs” created by this directive are not related to the TOCs defined by toctree. The term
TOC is just used to mean an organized list of links to more detailed documentation.

13



autoclasstoc, Release 1.3.0

14 Chapter 4. Restructured Text



CHAPTER

FIVE

SPHINX CONFIGURATION

The following setting can be defined in conf.py:

autoclasstoc_sections
The default list of sections to include in class TOCs, in the order they should appear in the documentation. The
values in the list can be either strings or Section classes. Strings are the same values that can be provided
to the section options of the autoclasstoc directive, and must refer to the name of a section class. The
following section names are available by default:

public-methods Methods that don’t begin with an underscore (or that are special methods, e.g.
__init__()).

private-methods Methods that do begin with an underscore (and are not special).

public-attrs Non-methods and non-classes that don’t begin with an underscore.

private-attrs Non-methods and non-classes that begin with an underscore.

inner-classes Classes defined within the class in question.

The names of any custom sections that have been defined can be used as well. The default value for this setting
is:

autoclasstoc_sections = [
'public-attrs',
'public-methods',
'private-attrs',
'private-methods',

]

15



autoclasstoc, Release 1.3.0

16 Chapter 5. Sphinx Configuration



CHAPTER

SIX

PYTHON API

The primary purpose of the Python API is to define custom sections for the class TOCs. This is done by subclassing
the Section class, although a number of helper functions and classes are also available.

autoclasstoc.AutoClassToc(name, argu-
ments, . . . )

Generate a succinct TOC for automatically documented
classes.

autoclasstoc.Section(state, cls) Format a specific section in a class TOC, e.g.
autoclasstoc.PublicMethods(state, cls) Include a “Public Methods” section in the class TOC.
autoclasstoc.PrivateMethods(state, cls) Include a “Private Methods” section in the class TOC.
autoclasstoc.PublicDataAttrs(state, cls) Include a “Public Data Attributes” section in the class

TOC.
autoclasstoc.PrivateDataAttrs(state, cls) Include a “Private Data Attributes” section in the class

TOC.
autoclasstoc.InnerClasses(state, cls) Include an “Inner Classes” section in the class TOC.
autoclasstoc.is_method(name, attr) Return true if the given attribute is a method or property.
autoclasstoc.is_data_attr(name, attr[, . . . ]) Return true if the given attribute is a data attribute, e.g.
autoclasstoc.is_public(name) Return true if the given name is public.
autoclasstoc.is_private(name) Return true if the given name is private.
autoclasstoc.is_special(name) Return True if the name starts and ends with a double-

underscore.
autoclasstoc.utils
autoclasstoc.nodes The autoclasstoc module defines two new docu-

tils nodes, which make it possible to create collapsible
content in HTML.

autoclasstoc.ConfigError Indicate an configuration error affecting
autoclasstoc.

6.1 autoclasstoc.Section

class autoclasstoc.Section(state, cls)
Format a specific section in a class TOC, e.g. “Public Methods”.

The purpose of this class is to make it easy to customize the sections that make up the class TOC. For example,
you might want an “Event Handler” section that includes any method that starts with “on_”. Or you might want
to format the links in a table with multiple columns, to save more space.

These kinds of things can be accomplished by subclassing Section and overwriting the relevant methods.
Almost every method is meant to be overridden by subclasses, but most subclasses will only need to override
key , title, and predicate. key and title have no default value, and must be overridden in each
subclass. predicate determines which attributes are included in the section, which is the primary purpose of

17



autoclasstoc, Release 1.3.0

most custom sections.

Public Data Attributes:

key
title
include_inherited

Public Methods:

__init__(state, cls) Create a section for a specific class.
__init_subclass__() Keep track of any Section subclasses that are de-

fined.
check() Raise ConfigError if the section has not been

configured correctly, e.g.
format() Return a list of docutils nodes that will compose the

section.
predicate(name, attr, meta) Return true if the given attribute should be included

in this section.

Private Methods:

_make_container() Create the container node that will contain the entire
section.

_make_rubric() Create the section header node.
_make_links(attrs) Make a link to the full documentation for each at-

tribute.
_make_inherited_details(parent) Make a collapsible node to contain links to inherited

attributes.
_filter_attrs(attrs) Return only those attributes that match the predicate.
_find_attrs() Return all attributes associated with this class.
_find_inherited_attrs() Find attributes that this class has inherited from other

classes.

Full Documentation:

__init__(state, cls)
Create a section for a specific class.

Parameters

• state (docutils.parsers.rst.states.RSTState) – The state object associ-
ated with the autoclasstoc directive. This can be used to evaluate restructured text
markup using nodes_from_rst().

• cls (type) – The class to make the TOC section for.

18 Chapter 6. Python API



autoclasstoc, Release 1.3.0

classmethod __init_subclass__()
Keep track of any Section subclasses that are defined.

_filter_attrs(attrs)
Return only those attributes that match the predicate.

Parameters attrs (dict) – A dictionary of attributes, in the same format as __dict__.

Returns A dictionary in the same format as attrs.

_find_attrs()
Return all attributes associated with this class.

These attributes will subsequently be filtered to remove any that aren’t relevant to this section, so there
is no need to do any filtering here. The return value should be a name-to-attribute dictionary in the same
format as __dict__.

_find_inherited_attrs()
Find attributes that this class has inherited from other classes.

These attributes will subsequently be filtered to remove any that aren’t relevant to this section, so there is
no need to do any filtering here. The return value should be a dictionary mapping parent class types to
__dict__ style dictionaries.

_make_container()
Create the container node that will contain the entire section.

This method is meant to be overridden in subclasses. The primary purpose of the container node is to
belong to a CSS class that can then be used to identify HTML elements associated with autoclasstoc.

_make_inherited_details(parent)
Make a collapsible node to contain links to inherited attributes.

This method is meant to be overridden in subclasses. The default implementation returns a details
node, which is rendered in HTML as a <details> element.

_make_links(attrs)
Make a link to the full documentation for each attribute.

This method is meant to be overridden in subclasses. The default implementation creates the links using
an autosummary directive.

Parameters attrs (dict) – A dictionary of attributes, in the same format as __dict__.

_make_rubric()
Create the section header node.

This method is meant to be overridden in subclasses.

check()
Raise ConfigError if the section has not been configured correctly, e.g. if it doesn’t have a title speci-
fied.

format()
Return a list of docutils nodes that will compose the section.

The default implementation of this method creates and populates autosummary directives for the class
in question and all of its superclasses. Almost all of

include_inherited = True

key = None

predicate(name, attr, meta)
Return true if the given attribute should be included in this section.

6.1. autoclasstoc.Section 19



autoclasstoc, Release 1.3.0

Parameters

• name (str) – The name of the attribute. In most cases, this is identical to attr.
__name__.

• attr (object) – The attribute object itself.

• meta (dict) – Any :meta: fields present in the attribute’s docstring, as parsed by
sphinx.util.docstrings.extract_metadata().

See also:

is_method is_data_attr is_public is_private is_special

title = None

6.2 autoclasstoc.is_method

autoclasstoc.is_method(name, attr)
Return true if the given attribute is a method or property.

6.3 autoclasstoc.is_data_attr

autoclasstoc.is_data_attr(name, attr, exclude_special=True)
Return true if the given attribute is a data attribute, e.g. not a method or an inner class. Many data attributes are
properties.

By default, attributes with double-underscore names (e.g. __dict__) are not considered data attributes. Unlike
special methods, these “special attributes” are very rarely relevant to users of a class. This behavior can be
disabled by toggling the exclude_special argument.

6.4 autoclasstoc.is_public

autoclasstoc.is_public(name)
Return true if the given name is public.

Specifically, a name is public if it either doesn’t start with an underscore, or if it starts and ends with two
underscores (i.e. a “special” method).

6.5 autoclasstoc.is_private

autoclasstoc.is_private(name)
Return true if the given name is private.

A name is private if it starts with an underscore, but does not start and end with two underscores (i.e. not a
special method).

20 Chapter 6. Python API

https://www.sphinx-doc.org/en/master/usage/restructuredtext/domains.html#info-field-lists


autoclasstoc, Release 1.3.0

6.6 autoclasstoc.is_special

autoclasstoc.is_special(name)
Return True if the name starts and ends with a double-underscore.

Such names typically have special meaning to Python, e.g. __init__().

6.7 autoclasstoc.utils

Functions

comma_separated_list(x) Parse a restructured text option as a comma-separated
list of strings.

filter_attrs(attrs, predicate) Remove attributes for which the given predicate func-
tion returns False.

find_inherited_attrs(cls) Return a dictionary mapping parent classes to the at-
tributes inherited from those classes.

load_class(mod_name, cls_name) Import the given class from the given module.
make_container() Make a container node to identify elements associated

with the autoclasstoc directive.
make_inherited_details(state, parent[, . . . ]) Make a collapsible node to contain information about

inherited attributes.
make_links(state, attrs) Make links to the given class attributes.
make_rubric(title) Make an informal header.
make_toc(state, cls, sections) Create the class TOC.
nodes_from_rst(state, rst) Create nodes from the given restructured text.
pick_class(qual_name, env) Figure out which class to make the TOC for.
pick_sections(sections[, exclude]) Determine which sections to include in the class TOC.
strip_p(nodes) Remove any top-level paragraph nodes.

6.7.1 autoclasstoc.utils.comma_separated_list

autoclasstoc.utils.comma_separated_list(x)
Parse a restructured text option as a comma-separated list of strings.

6.7. autoclasstoc.utils 21



autoclasstoc, Release 1.3.0

6.7.2 autoclasstoc.utils.filter_attrs

autoclasstoc.utils.filter_attrs(attrs, predicate)
Remove attributes for which the given predicate function returns False.

6.7.3 autoclasstoc.utils.find_inherited_attrs

autoclasstoc.utils.find_inherited_attrs(cls)
Return a dictionary mapping parent classes to the attributes inherited from those classes.

6.7.4 autoclasstoc.utils.load_class

autoclasstoc.utils.load_class(mod_name, cls_name)
Import the given class from the given module.

6.7.5 autoclasstoc.utils.make_container

autoclasstoc.utils.make_container()
Make a container node to identify elements associated with the autoclasstoc directive.

6.7.6 autoclasstoc.utils.make_inherited_details

autoclasstoc.utils.make_inherited_details(state, parent, open_by_default=False)
Make a collapsible node to contain information about inherited attributes.

6.7.7 autoclasstoc.utils.make_links

autoclasstoc.utils.make_links(state, attrs)
Make links to the given class attributes.

More specifically, the links are made using the autosummary directive.

6.7.8 autoclasstoc.utils.make_rubric

autoclasstoc.utils.make_rubric(title)
Make an informal header.

6.7.9 autoclasstoc.utils.make_toc

autoclasstoc.utils.make_toc(state, cls, sections)
Create the class TOC.

22 Chapter 6. Python API



autoclasstoc, Release 1.3.0

6.7.10 autoclasstoc.utils.nodes_from_rst

autoclasstoc.utils.nodes_from_rst(state, rst)
Create nodes from the given restructured text.

The rst argument can either be any of the following types:

• string, with any number of lines

• list of strings

• StringList (the type used by docutils to represent lines of restructured text)

• node

6.7.11 autoclasstoc.utils.pick_class

autoclasstoc.utils.pick_class(qual_name, env)
Figure out which class to make the TOC for.

We can either be given this information as an argument, or we can try to figure it out from the context (e.g. the
autoclass or py:class currently being processed).

Parameters

• qual_name (str) – The name of the class to pick, or None if the class should be inferred
from the environment.

• env (sphinx.environment.BuildEnvironment) – This object is available as
self.env from SphinxDirective subclasses.

6.7.12 autoclasstoc.utils.pick_sections

autoclasstoc.utils.pick_sections(sections, exclude=None)
Determine which sections to include in the class TOC.

The return value will be a list in the same order as sections, but with any sections from exclude removed. Both
arguments can specify sections using string names (e.g. “public-methods”) or un-instantiated Section classes.
All names will be converted to classes in the return value.

6.7.13 autoclasstoc.utils.strip_p

autoclasstoc.utils.strip_p(nodes)
Remove any top-level paragraph nodes.

Parsing a simple string like “Hello world” with nodes_from_rst will return text wrapped in a paragraph. If
this paragraph is not desired (e.g. because it messes with formatting), this function can be used to get rid of it.

6.7. autoclasstoc.utils 23



autoclasstoc, Release 1.3.0

6.8 autoclasstoc.nodes

The autoclasstoc module defines two new docutils nodes, which make it possible to create collapsible content in
HTML.

Classes

details([open_by_default]) A node that can be expanded or collapsed by the user.
details_summary([rawsource, text]) The summary text to display when a details node is

collapsed.

Functions

setup(app) Configure Sphinx to use the details and
details_summary nodes.

6.8.1 autoclasstoc.nodes.setup

autoclasstoc.nodes.setup(app)
Configure Sphinx to use the details and details_summary nodes.

6.9 autoclasstoc.ConfigError

exception autoclasstoc.ConfigError
Indicate an configuration error affecting autoclasstoc.

24 Chapter 6. Python API



PYTHON MODULE INDEX

a
autoclasstoc, 17
autoclasstoc.nodes, 24
autoclasstoc.utils, 21

25



autoclasstoc, Release 1.3.0

26 Python Module Index



INDEX

Symbols
:exclude-sections: (directive option)

autoclasstoc (directive), 13
:sections: (directive option)

autoclasstoc (directive), 13
__init__() (autoclasstoc.Section method), 18
__init_subclass__() (autoclasstoc.Section class

method), 18
_filter_attrs() (autoclasstoc.Section method), 19
_find_attrs() (autoclasstoc.Section method), 19
_find_inherited_attrs() (autoclasstoc.Section

method), 19
_make_container() (autoclasstoc.Section method),

19
_make_inherited_details() (auto-

classtoc.Section method), 19
_make_links() (autoclasstoc.Section method), 19
_make_rubric() (autoclasstoc.Section method), 19

A
autoclasstoc

module, 17
autoclasstoc (directive), 13

:exclude-sections: (directive option), 13
:sections: (directive option), 13

autoclasstoc.nodes
module, 24

autoclasstoc.utils
module, 21

autoclasstoc_sections
configuration value, 15

C
check() (autoclasstoc.Section method), 19
comma_separated_list() (in module auto-

classtoc.utils), 21
ConfigError, 24
configuration value

autoclasstoc_sections, 15

F
filter_attrs() (in module autoclasstoc.utils), 22

find_inherited_attrs() (in module auto-
classtoc.utils), 22

format() (autoclasstoc.Section method), 19

I
include_inherited (autoclasstoc.Section at-

tribute), 19
is_data_attr() (in module autoclasstoc), 20
is_method() (in module autoclasstoc), 20
is_private() (in module autoclasstoc), 20
is_public() (in module autoclasstoc), 20
is_special() (in module autoclasstoc), 21

K
key (autoclasstoc.Section attribute), 19

L
load_class() (in module autoclasstoc.utils), 22

M
make_container() (in module autoclasstoc.utils), 22
make_inherited_details() (in module auto-

classtoc.utils), 22
make_links() (in module autoclasstoc.utils), 22
make_rubric() (in module autoclasstoc.utils), 22
make_toc() (in module autoclasstoc.utils), 22
module

autoclasstoc, 17
autoclasstoc.nodes, 24
autoclasstoc.utils, 21

N
nodes_from_rst() (in module autoclasstoc.utils), 23

P
pick_class() (in module autoclasstoc.utils), 23
pick_sections() (in module autoclasstoc.utils), 23
predicate() (autoclasstoc.Section method), 19

S
Section (class in autoclasstoc), 17
setup() (in module autoclasstoc.nodes), 24

27



autoclasstoc, Release 1.3.0

strip_p() (in module autoclasstoc.utils), 23

T
title (autoclasstoc.Section attribute), 20

28 Index


	Advanced Usage
	A TOC for every class
	Custom sections
	Custom CSS

	Getting Help
	Third-Party Projects
	Restructured Text
	Sphinx Configuration
	Python API
	autoclasstoc.Section
	autoclasstoc.is_method
	autoclasstoc.is_data_attr
	autoclasstoc.is_public
	autoclasstoc.is_private
	autoclasstoc.is_special
	autoclasstoc.utils
	autoclasstoc.nodes
	autoclasstoc.ConfigError

	Python Module Index
	Index

