My Project
Macros | Functions
gr_kstd2.cc File Reference
#include "kernel/mod2.h"
#include "misc/options.h"
#include "misc/intvec.h"
#include "polys/weight.h"
#include "kernel/polys.h"
#include "polys/monomials/ring.h"
#include "polys/nc/gb_hack.h"
#include "polys/nc/nc.h"
#include "polys/nc/sca.h"
#include "kernel/ideals.h"
#include "kernel/GBEngine/kstd1.h"
#include "kernel/GBEngine/khstd.h"
#include "kernel/GBEngine/ratgring.h"
#include "kernel/GBEngine/kutil.h"
#include "kernel/GBEngine/nc.h"

Go to the source code of this file.

Macros

#define PLURAL_INTERNAL_DECLARATIONS
 
#define MYTEST   0
 

Functions

int redGrFirst (LObject *h, kStrategy strat)
 
void ratGB_divide_out (poly p)
 
int redGrRatGB (LObject *h, kStrategy strat)
 
void nc_gr_initBba (ideal F, kStrategy strat)
 nc_gr_initBba is needed for sca_gr_bba and gr_bba. More...
 
ideal k_gnc_gr_bba (const ideal F, const ideal Q, const intvec *, const intvec *, kStrategy strat, const ring _currRing)
 
ideal k_gnc_gr_mora (const ideal F, const ideal Q, const intvec *, const intvec *, kStrategy strat, const ring _currRing)
 

Macro Definition Documentation

◆ MYTEST

#define MYTEST   0

Definition at line 1028 of file gr_kstd2.cc.

◆ PLURAL_INTERNAL_DECLARATIONS

#define PLURAL_INTERNAL_DECLARATIONS

Definition at line 7 of file gr_kstd2.cc.

Function Documentation

◆ k_gnc_gr_bba()

ideal k_gnc_gr_bba ( const ideal  F,
const ideal  Q,
const intvec ,
const intvec ,
kStrategy  strat,
const ring  _currRing 
)

Definition at line 1030 of file gr_kstd2.cc.

1031 {
1032  const ring save = currRing; if( currRing != _currRing ) rChangeCurrRing(_currRing);
1033 
1034 #if MYTEST
1035  PrintS("<gnc_gr_bba>\n");
1036 #endif
1037 
1038 #ifdef HAVE_PLURAL
1039 #if MYTEST
1040  PrintS("currRing: \n");
1041  rWrite(currRing);
1042 #ifdef RDEBUG
1044 #endif
1045 
1046  PrintS("F: \n");
1047  idPrint(F);
1048  PrintS("Q: \n");
1049  idPrint(Q);
1050 #endif
1051 #endif
1052 
1053  assume(currRing->OrdSgn != -1); // no mora!!! it terminates only for global ordering!!! (?)
1054 
1055  // intvec *w=NULL;
1056  // intvec *hilb=NULL;
1057  int olddeg,reduc;
1058  int red_result=1;
1059  int /*hilbeledeg=1,*/hilbcount=0/*,minimcnt=0*/;
1060 
1061  initBuchMoraCrit(strat); /*set Gebauer, honey, sugarCrit*/
1062  // initHilbCrit(F,Q,&hilb,strat);
1063  /* in plural we don't need Hilb yet */
1064  nc_gr_initBba(F,strat);
1065  initBuchMoraPos(strat);
1066  if (rIsRatGRing(currRing))
1067  {
1068  strat->posInL=posInL0; // by pCmp of lcm
1069  }
1070  /*set enterS, spSpolyShort, reduce, red, initEcart, initEcartPair*/
1071  /*Shdl=*/initBuchMora(F, Q,strat);
1072  strat->posInT=posInT110;
1073  reduc = olddeg = 0;
1074 
1075  /* compute------------------------------------------------------- */
1076  while (strat->Ll >= 0)
1077  {
1078  if (TEST_OPT_DEBUG) messageSets(strat);
1079 
1080  if (strat->Ll== 0) strat->interpt=TRUE;
1081  if (TEST_OPT_DEGBOUND
1082  && ((strat->honey
1083  && (strat->L[strat->Ll].ecart+currRing->pFDeg(strat->L[strat->Ll].p,currRing)>Kstd1_deg))
1084  || ((!strat->honey) && (currRing->pFDeg(strat->L[strat->Ll].p,currRing)>Kstd1_deg))))
1085  {
1086  /*
1087  *stops computation if
1088  * 24 IN test and the degree +ecart of L[strat->Ll] is bigger then
1089  *a predefined number Kstd1_deg
1090  */
1091  while (strat->Ll >= 0) deleteInL(strat->L,&strat->Ll,strat->Ll,strat);
1092  break;
1093  }
1094  /* picks the last element from the lazyset L */
1095  strat->P = strat->L[strat->Ll];
1096  strat->Ll--;
1097  //kTest(strat);
1098 
1099  if (strat->P.p != NULL)
1100  if (pNext(strat->P.p) == strat->tail)
1101  {
1102  /* deletes the short spoly and computes */
1103  pLmFree(strat->P.p);
1104  /* the real one */
1105 // if (ncRingType(currRing)==nc_lie) /* prod crit */
1106 // if(pHasNotCF(strat->P.p1,strat->P.p2))
1107 // {
1108 // strat->cp++;
1109 // /* prod.crit itself in nc_CreateSpoly */
1110 // }
1111 
1112 
1113  if( ! rIsRatGRing(currRing) )
1114  {
1115  strat->P.p = nc_CreateSpoly(strat->P.p1,strat->P.p2,currRing);
1116  }
1117 #ifdef HAVE_RATGRING
1118  else
1119  {
1120  /* rational case */
1121  strat->P.p = nc_rat_CreateSpoly(strat->P.p1,strat->P.p2,currRing->real_var_start-1,currRing);
1122  }
1123 #endif
1124 
1125 
1126 #ifdef PDEBUG
1127  p_Test(strat->P.p, currRing);
1128 #endif
1129 
1130 #if MYTEST
1131  if (TEST_OPT_DEBUG)
1132  {
1133  PrintS("p1: "); pWrite(strat->P.p1);
1134  PrintS("p2: "); pWrite(strat->P.p2);
1135  PrintS("SPoly: "); pWrite(strat->P.p);
1136  }
1137 #endif
1138  }
1139 
1140 
1141  if (strat->P.p != NULL)
1142  {
1143  if (TEST_OPT_PROT)
1144  message((strat->honey ? strat->P.ecart : 0) + strat->P.pFDeg(),
1145  &olddeg,&reduc,strat, red_result);
1146 
1147 #if MYTEST
1148  if (TEST_OPT_DEBUG)
1149  {
1150  PrintS("p1: "); pWrite(strat->P.p1);
1151  PrintS("p2: "); pWrite(strat->P.p2);
1152  PrintS("SPoly before: "); pWrite(strat->P.p);
1153  }
1154 #endif
1155 
1156  /* reduction of the element chosen from L */
1157  strat->red(&strat->P,strat);
1158 
1159 #if MYTEST
1160  if (TEST_OPT_DEBUG)
1161  {
1162  PrintS("red SPoly: "); pWrite(strat->P.p);
1163  }
1164 #endif
1165  }
1166  if (strat->P.p != NULL)
1167  {
1168  if (TEST_OPT_PROT)
1169  {
1170  PrintS("s\n");
1171  }
1172  /* enter P.p into s and L */
1173  {
1174 /* quick unit detection in the rational case */
1175 #ifdef HAVE_RATGRING
1176  if( rIsRatGRing(currRing) )
1177  {
1178  if ( p_LmIsConstantRat(strat->P.p, currRing) )
1179  {
1180 #ifdef PDEBUG
1181  PrintS("unit element detected:");
1182  p_wrp(strat->P.p,currRing);
1183 #endif
1184  p_Delete(&strat->P.p,currRing, strat->tailRing);
1185  strat->P.p = pOne();
1186  }
1187  }
1188 #endif
1189  strat->P.sev=0;
1190  int pos=posInS(strat,strat->sl,strat->P.p, strat->P.ecart);
1191  {
1193  {
1194  if ((strat->syzComp==0)||(!strat->homog))
1195  {
1196  #ifdef HAVE_RATGRING
1197  if(!rIsRatGRing(currRing))
1198  #endif
1199  strat->P.p = redtailBba(strat->P.p,pos-1,strat);
1200  }
1201 
1202  strat->P.p=p_Cleardenom(strat->P.p, currRing);
1203  }
1204  else
1205  {
1206  pNorm(strat->P.p);
1207  if ((strat->syzComp==0)||(!strat->homog))
1208  {
1209  strat->P.p = redtailBba(strat->P.p,pos-1,strat);
1210  }
1211  }
1212  if (TEST_OPT_DEBUG)
1213  {
1214  PrintS("new s:"); wrp(strat->P.p);
1215  PrintLn();
1216 #if MYTEST
1217  PrintS("s: "); pWrite(strat->P.p);
1218 #endif
1219 
1220  }
1221  // kTest(strat);
1222  //
1223  enterpairs(strat->P.p,strat->sl,strat->P.ecart,pos,strat);
1224 
1225  if (strat->sl==-1) pos=0;
1226  else pos=posInS(strat,strat->sl,strat->P.p,strat->P.ecart);
1227 
1228  strat->enterS(strat->P,pos,strat,-1);
1229  }
1230 // if (hilb!=NULL) khCheck(Q,w,hilb,hilbeledeg,hilbcount,strat);
1231  }
1232  kDeleteLcm(&strat->P);
1233  }
1234  //kTest(strat);
1235  }
1236  if (TEST_OPT_DEBUG) messageSets(strat);
1237 
1238  /* complete reduction of the standard basis--------- */
1239  if (TEST_OPT_SB_1)
1240  {
1241  int k=1;
1242  int j;
1243  while(k<=strat->sl)
1244  {
1245  j=0;
1246  loop
1247  {
1248  if (j>=k) break;
1249  clearS(strat->S[j],strat->sevS[j],&k,&j,strat);
1250  j++;
1251  }
1252  k++;
1253  }
1254  }
1255 
1256  if (TEST_OPT_REDSB)
1257  completeReduce(strat);
1258  /* release temp data-------------------------------- */
1259  exitBuchMora(strat);
1260 // if (TEST_OPT_WEIGHTM)
1261 // {
1262 // currRing->pFDeg=pFDegOld;
1263 // currRing->pLDeg=pLDegOld;
1264 // if (ecartWeights)
1265 // {
1266 // omFreeSize((ADDRESS)ecartWeights,((currRing->N)+1)*sizeof(short));
1267 // ecartWeights=NULL;
1268 // }
1269 // }
1270  if (TEST_OPT_PROT) messageStat(hilbcount,strat);
1271  if (Q!=NULL) updateResult(strat->Shdl,Q,strat);
1272 
1273 
1274 #ifdef PDEBUG
1275 /* for counting number of pairs [enterL] in Plural */
1276 /* extern int zaehler; */
1277 /* Print("Total pairs considered:%d\n",zaehler); zaehler=0; */
1278 #endif /*PDEBUG*/
1279 
1280 #if MYTEST
1281  PrintS("</gnc_gr_bba>\n");
1282 #endif
1283 
1284  if( currRing != save ) rChangeCurrRing(save);
1285 
1286  return (strat->Shdl);
1287 }
#define TRUE
Definition: auxiliary.h:100
int k
Definition: cfEzgcd.cc:99
int syzComp
Definition: kutil.h:353
ring tailRing
Definition: kutil.h:342
int Ll
Definition: kutil.h:350
char honey
Definition: kutil.h:377
polyset S
Definition: kutil.h:303
poly tail
Definition: kutil.h:333
int(* posInL)(const LSet set, const int length, LObject *L, const kStrategy strat)
Definition: kutil.h:281
ideal Shdl
Definition: kutil.h:300
void(* enterS)(LObject &h, int pos, kStrategy strat, int atR)
Definition: kutil.h:283
char interpt
Definition: kutil.h:371
LObject P
Definition: kutil.h:299
LSet L
Definition: kutil.h:324
int(* posInT)(const TSet T, const int tl, LObject &h)
Definition: kutil.h:278
int(* red)(LObject *L, kStrategy strat)
Definition: kutil.h:275
int sl
Definition: kutil.h:347
unsigned long * sevS
Definition: kutil.h:319
char homog
Definition: kutil.h:372
int j
Definition: facHensel.cc:110
void nc_gr_initBba(ideal F, kStrategy strat)
nc_gr_initBba is needed for sca_gr_bba and gr_bba.
Definition: gr_kstd2.cc:950
#define idPrint(id)
Definition: ideals.h:46
STATIC_VAR jList * Q
Definition: janet.cc:30
KINLINE poly redtailBba(poly p, int pos, kStrategy strat, BOOLEAN normalize)
Definition: kInline.h:1180
KINLINE void clearS(poly p, unsigned long p_sev, int *at, int *k, kStrategy strat)
Definition: kInline.h:1200
EXTERN_VAR int Kstd1_deg
Definition: kstd1.h:49
void message(int i, int *reduc, int *olddeg, kStrategy strat, int red_result)
Definition: kutil.cc:8033
void initBuchMora(ideal F, ideal Q, kStrategy strat)
Definition: kutil.cc:10322
void enterpairs(poly h, int k, int ecart, int pos, kStrategy strat, int atR)
Definition: kutil.cc:4933
void initBuchMoraPos(kStrategy strat)
Definition: kutil.cc:10149
int posInL0(const LSet set, const int length, LObject *p, const kStrategy)
Definition: kutil.cc:6139
void exitBuchMora(kStrategy strat)
Definition: kutil.cc:10406
int posInS(const kStrategy strat, const int length, const poly p, const int ecart_p)
Definition: kutil.cc:5109
int posInT110(const TSet set, const int length, LObject &p)
Definition: kutil.cc:5553
void updateResult(ideal r, ideal Q, kStrategy strat)
Definition: kutil.cc:10647
void deleteInL(LSet set, int *length, int j, kStrategy strat)
Definition: kutil.cc:1244
void initBuchMoraCrit(kStrategy strat)
Definition: kutil.cc:9997
void completeReduce(kStrategy strat, BOOLEAN withT)
Definition: kutil.cc:10859
void messageSets(kStrategy strat)
Definition: kutil.cc:8106
void messageStat(int hilbcount, kStrategy strat)
Definition: kutil.cc:8074
static void kDeleteLcm(LObject *P)
Definition: kutil.h:877
static poly nc_CreateSpoly(const poly p1, const poly p2, const ring r)
Definition: nc.h:241
#define assume(x)
Definition: mod2.h:387
#define pNext(p)
Definition: monomials.h:36
#define NULL
Definition: omList.c:12
#define TEST_OPT_INTSTRATEGY
Definition: options.h:109
#define TEST_OPT_REDSB
Definition: options.h:103
#define TEST_OPT_DEGBOUND
Definition: options.h:112
#define TEST_OPT_SB_1
Definition: options.h:118
#define TEST_OPT_PROT
Definition: options.h:102
#define TEST_OPT_DEBUG
Definition: options.h:107
poly p_Cleardenom(poly p, const ring r)
Definition: p_polys.cc:2900
static void p_Delete(poly *p, const ring r)
Definition: p_polys.h:861
#define p_Test(p, r)
Definition: p_polys.h:162
void p_wrp(poly p, ring lmRing, ring tailRing)
Definition: polys0.cc:373
void rChangeCurrRing(ring r)
Definition: polys.cc:15
VAR ring currRing
Widely used global variable which specifies the current polynomial ring for Singular interpreter and ...
Definition: polys.cc:13
void wrp(poly p)
Definition: polys.h:310
static void pLmFree(poly p)
frees the space of the monomial m, assumes m != NULL coef is not freed, m is not advanced
Definition: polys.h:70
void pWrite(poly p)
Definition: polys.h:308
void pNorm(poly p, const ring R=currRing)
Definition: polys.h:363
#define pOne()
Definition: polys.h:315
poly nc_rat_CreateSpoly(poly pp1, poly pp2, int ishift, const ring r)
Definition: ratgring.cc:340
BOOLEAN p_LmIsConstantRat(const poly p, const ring r)
Definition: ratgring.cc:642
void PrintS(const char *s)
Definition: reporter.cc:284
void PrintLn()
Definition: reporter.cc:310
void rWrite(ring r, BOOLEAN details)
Definition: ring.cc:226
void rDebugPrint(const ring r)
Definition: ring.cc:4075
static BOOLEAN rIsRatGRing(const ring r)
Definition: ring.h:430
#define loop
Definition: structs.h:80

◆ k_gnc_gr_mora()

ideal k_gnc_gr_mora ( const ideal  F,
const ideal  Q,
const intvec ,
const intvec ,
kStrategy  strat,
const ring  _currRing 
)

Definition at line 1289 of file gr_kstd2.cc.

1290 {
1291 #ifndef SING_NDEBUG
1292  // Not yet!
1293  WarnS("Sorry, non-commutative mora is not yet implemented!");
1294 #endif
1295 
1296  return gnc_gr_bba(F, Q, NULL, NULL, strat, _currRing);
1297 }
#define WarnS
Definition: emacs.cc:78
EXTERN_VAR BBA_Proc gnc_gr_bba
Definition: gb_hack.h:10

◆ nc_gr_initBba()

void nc_gr_initBba ( ideal  F,
kStrategy  strat 
)

nc_gr_initBba is needed for sca_gr_bba and gr_bba.

Definition at line 950 of file gr_kstd2.cc.

954 {
956 
957  // int i;
958 // idhdl h;
959  /* setting global variables ------------------- */
960  strat->enterS = enterSBba;
961 
962 /*
963  if ((BTEST1(20)) && (!strat->honey))
964  strat->red = nc_redBest;
965  else if (strat->honey)
966  strat->red = nc_redHoney;
967  else if (currRing->pLexOrder && !strat->homog)
968  strat->red = nc_redLazy;
969  else if (TEST_OPT_INTSTRATEGY && strat->homog)
970  strat->red = nc_redHomog0;
971  else
972  strat->red = nc_redHomog;
973 */
974 
975 // if (rIsPluralRing(currRing))
976  strat->red = redGrFirst;
977 #ifdef HAVE_RATGRING
978  if (rIsRatGRing(currRing))
979  {
980  int ii=IDELEMS(F)-1;
981  int jj;
982  BOOLEAN is_rat_id=FALSE;
983  for(;ii>=0;ii--)
984  {
985  for(jj=currRing->real_var_start;jj<=currRing->real_var_end;jj++)
986  {
987  if(pGetExp(F->m[ii],jj)>0) { is_rat_id=TRUE; break; }
988  }
989  if (is_rat_id) break;
990  }
991  if (is_rat_id) strat->red=redGrRatGB;
992  }
993 #endif
994 
995  if (currRing->pLexOrder && strat->honey)
996  strat->initEcart = initEcartNormal;
997  else
998  strat->initEcart = initEcartBBA;
999  if (strat->honey)
1001  else
1003 // if ((TEST_OPT_WEIGHTM)&&(F!=NULL))
1004 // {
1005 // //interred machen Aenderung
1006 // pFDegOld=currRing->pFDeg;
1007 // pLDegOld=currRing->pLDeg;
1008 // // h=ggetid("ecart");
1009 // // if ((h!=NULL) && (IDTYP(h)==INTVEC_CMD))
1010 // // {
1011 // // ecartWeights=iv2array(IDINTVEC(h));
1012 // // }
1013 // // else
1014 // {
1015 // ecartWeights=(short *)omAlloc(((currRing->N)+1)*sizeof(short));
1016 // /*uses automatic computation of the ecartWeights to set them*/
1017 // kEcartWeights(F->m,IDELEMS(F)-1,ecartWeights);
1018 // }
1019 // currRing->pFDeg=totaldegreeWecart;
1020 // currRing->pLDeg=maxdegreeWecart;
1021 // for(i=1; i<=(currRing->N); i++)
1022 // Print(" %d",ecartWeights[i]);
1023 // PrintLn();
1024 // mflush();
1025 // }
1026 }
int BOOLEAN
Definition: auxiliary.h:87
#define FALSE
Definition: auxiliary.h:96
void(* initEcartPair)(LObject *h, poly f, poly g, int ecartF, int ecartG)
Definition: kutil.h:284
void(* initEcart)(TObject *L)
Definition: kutil.h:277
int redGrRatGB(LObject *h, kStrategy strat)
Definition: gr_kstd2.cc:223
int redGrFirst(LObject *h, kStrategy strat)
Definition: gr_kstd2.cc:51
void initEcartPairMora(LObject *Lp, poly, poly, int ecartF, int ecartG)
Definition: kutil.cc:1347
void initEcartNormal(TObject *h)
Definition: kutil.cc:1325
void initEcartBBA(TObject *h)
Definition: kutil.cc:1333
void initEcartPairBba(LObject *Lp, poly, poly, int, int)
Definition: kutil.cc:1340
void enterSBba(LObject &p, int atS, kStrategy strat, int atR)
Definition: kutil.cc:9350
#define pGetExp(p, i)
Exponent.
Definition: polys.h:41
static BOOLEAN rIsPluralRing(const ring r)
we must always have this test!
Definition: ring.h:400
#define IDELEMS(i)
Definition: simpleideals.h:23

◆ ratGB_divide_out()

void ratGB_divide_out ( poly  p)

Definition at line 170 of file gr_kstd2.cc.

171 {
172  /* extracts monomial content from localized expression */
173  /* searches for an m (monomial in var 1.. real_var_start-1)
174  * such that m divides p and divides p by this m if it exist*/
175  if (p==NULL) return;
176  poly root=p;
178  poly f=pHead(p);
179  int i;
180  for (i=currRing->real_var_start;i<=currRing->real_var_end;i++)
181  {
182  pSetExp(f,i,0);
183  }
184  loop
185  {
186  pIter(p);
187  if (p==NULL) { pSetm(f); break;}
188  for (i=1;i<=rVar(currRing);i++)
189  {
191  }
192  }
193  if (!pIsConstant(f))
194  {
195 #ifdef KDEBUG
196  if (TEST_OPT_DEBUG)
197  {
198  PrintS("divide out:");p_wrp(f,currRing);
199  PrintS(" from ");pWrite(root);
200  }
201 #endif
202  p=root;
203  loop
204  {
205  if (p==NULL) break;
206  for (i=1;i<=rVar(currRing);i++)
207  {
208  pSetExp(p,i,pGetExp(p,i)-pGetExp(f,i));
209  }
210  pSetm(p);
211  pIter(p);
212  }
213  }
214  pDelete(&f);
215 }
static int si_min(const int a, const int b)
Definition: auxiliary.h:125
int i
Definition: cfEzgcd.cc:132
int p
Definition: cfModGcd.cc:4080
FILE * f
Definition: checklibs.c:9
#define pIter(p)
Definition: monomials.h:37
#define pDelete(p_ptr)
Definition: polys.h:186
#define pHead(p)
returns newly allocated copy of Lm(p), coef is copied, next=NULL, p might be NULL
Definition: polys.h:67
#define pSetm(p)
Definition: polys.h:271
#define pIsConstant(p)
like above, except that Comp must be 0
Definition: polys.h:238
#define pSetExp(p, i, v)
Definition: polys.h:42
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition: ring.h:597

◆ redGrFirst()

int redGrFirst ( LObject h,
kStrategy  strat 
)

Definition at line 51 of file gr_kstd2.cc.

52 {
53  int at,reddeg,d,i;
54  int pass = 0;
55  int j = 0;
56 
57  d = currRing->pFDeg((*h).p,currRing)+(*h).ecart;
58  reddeg = strat->LazyDegree+d;
59  loop
60  {
61  if (j > strat->sl)
62  {
63 #ifdef KDEBUG
64  if (TEST_OPT_DEBUG) PrintLn();
65 #endif
66  return 0;
67  }
68 #ifdef KDEBUG
69  if (TEST_OPT_DEBUG) Print("%d",j);
70 #endif
71  if (pDivisibleBy(strat->S[j],(*h).p))
72  {
73 #ifdef KDEBUG
74  if (TEST_OPT_DEBUG) PrintS("+\n");
75 #endif
76  /*
77  * the polynomial to reduce with is;
78  * T[j].p
79  */
81  pNorm(strat->S[j]);
82 #ifdef KDEBUG
83  if (TEST_OPT_DEBUG)
84  {
85  wrp(h->p);
86  PrintS(" with ");
87  wrp(strat->S[j]);
88  }
89 #endif
90  (*h).p = nc_ReduceSpoly(strat->S[j],(*h).p, currRing);
91  //spSpolyRed(strat->T[j].p,(*h).p,strat->kNoether);
92 
93 #ifdef KDEBUG
94  if (TEST_OPT_DEBUG)
95  {
96  PrintS(" to ");
97  wrp(h->p);
98  }
99 #endif
100  if ((*h).p == NULL)
101  {
102  kDeleteLcm(h);
103  return 0;
104  }
106  {
107  h->pCleardenom();// also removes Content
108  }
109  /*computes the ecart*/
110  d = currRing->pLDeg((*h).p,&((*h).length),currRing);
111  (*h).FDeg=currRing->pFDeg((*h).p,currRing);
112  (*h).ecart = d-(*h).FDeg; /*pFDeg((*h).p);*/
113  if ((strat->syzComp!=0) && !strat->honey)
114  {
115  if ((strat->syzComp>0) && (pMinComp((*h).p) > strat->syzComp))
116  {
117 #ifdef KDEBUG
118  if (TEST_OPT_DEBUG) PrintS(" > sysComp\n");
119 #endif
120  return 0;
121  }
122  }
123  /*- try to reduce the s-polynomial -*/
124  pass++;
125  /*
126  *test whether the polynomial should go to the lazyset L
127  *-if the degree jumps
128  *-if the number of pre-defined reductions jumps
129  */
130  if ((strat->Ll >= 0)
131  && ((d >= reddeg) || (pass > strat->LazyPass))
132  && !strat->homog)
133  {
134  at = strat->posInL(strat->L,strat->Ll,h,strat);
135  if (at <= strat->Ll)
136  {
137  i=strat->sl+1;
138  do
139  {
140  i--;
141  if (i<0) return 0;
142  } while (!pDivisibleBy(strat->S[i],(*h).p));
143  enterL(&strat->L,&strat->Ll,&strat->Lmax,*h,at);
144 #ifdef KDEBUG
145  if (TEST_OPT_DEBUG) Print(" degree jumped; ->L%d\n",at);
146 #endif
147  (*h).p = NULL;
148  return 0;
149  }
150  }
151  if ((TEST_OPT_PROT) && (strat->Ll < 0) && (d >= reddeg))
152  {
153  reddeg = d+1;
154  Print(".%d",d);mflush();
155  }
156  j = 0;
157 #ifdef KDEBUG
158  if TEST_OPT_DEBUG PrintLn();
159 #endif
160  }
161  else
162  {
163 #ifdef KDEBUG
164  if (TEST_OPT_DEBUG) PrintS("-");
165 #endif
166  j++;
167  }
168  }
169 }
int Lmax
Definition: kutil.h:350
int LazyPass
Definition: kutil.h:352
int LazyDegree
Definition: kutil.h:352
#define Print
Definition: emacs.cc:80
STATIC_VAR Poly * h
Definition: janet.cc:971
void enterL(LSet *set, int *length, int *LSetmax, LObject p, int at)
Definition: kutil.cc:1301
static poly nc_ReduceSpoly(const poly p1, poly p2, const ring r)
Definition: nc.h:254
#define pDivisibleBy(a, b)
returns TRUE, if leading monom of a divides leading monom of b i.e., if there exists a expvector c > ...
Definition: polys.h:138
#define pMinComp(p)
Definition: polys.h:300
#define mflush()
Definition: reporter.h:58

◆ redGrRatGB()

int redGrRatGB ( LObject h,
kStrategy  strat 
)

Definition at line 223 of file gr_kstd2.cc.

224 {
225  int at,reddeg,d,i;
226  int pass = 0;
227  int j = 0;
228  int c_j=-1, c_e=-2;
229  poly c_p=NULL;
230  assume(strat->tailRing==currRing);
231 
232  ratGB_divide_out((*h).p);
233  d = currRing->pFDeg((*h).p,currRing)+(*h).ecart;
234  reddeg = strat->LazyDegree+d;
236  {
237  h->pCleardenom();// also does a pContentRat
238  }
239  loop
240  {
241  if (j > strat->sl)
242  {
243  if (c_j>=0)
244  {
245  /*
246  * the polynomial to reduce with is;
247  * S[c_j]
248  */
250  pNorm(strat->S[c_j]);
251 #ifdef KDEBUG
252  if (TEST_OPT_DEBUG)
253  if (TEST_OPT_DEBUG)
254  {
255  wrp(h->p);
256  Print(" with S[%d]= ",c_j);
257  wrp(strat->S[c_j]);
258  }
259 #endif
260  //poly hh = nc_CreateSpoly(strat->S[c_j],(*h).p, currRing);
261  // Print("vor nc_rat_ReduceSpolyNew (ce:%d) ",c_e);wrp(h->p);PrintLn();
262  //if(c_e==-1)
263  // c_p = nc_CreateSpoly(pCopy(strat->S[c_j]),pCopy((*h).p), currRing);
264  //else
265  // c_p=nc_rat_ReduceSpolyNew(strat->S[c_j],pCopy((*h).p), currRing->real_var_start-1,currRing);
266  // Print("nach nc_rat_ReduceSpolyNew ");wrp(c_p);PrintLn();
267  // pDelete(&((*h).p));
268 
269  c_p=nc_rat_ReduceSpolyNew(strat->S[c_j],(*h).p, currRing->real_var_start-1,currRing);
270  (*h).p=c_p;
272  {
273  h->pCleardenom();// also removes Content
274  }
275 
276 #ifdef KDEBUG
277  if (TEST_OPT_DEBUG)
278  {
279  PrintS(" to ");
280  wrp(h->p);
281  PrintLn();
282  }
283 #endif
284  if ((*h).p == NULL)
285  {
286  kDeleteLcm(h);
287  return 0;
288  }
289  ratGB_divide_out((*h).p);
290  d = currRing->pLDeg((*h).p,&((*h).length),currRing);
291  (*h).FDeg=currRing->pFDeg((*h).p,currRing);
292  (*h).ecart = d-(*h).FDeg; /*pFDeg((*h).p);*/
293  /*- try to reduce the s-polynomial again -*/
294  pass++;
295  j=0;
296  c_j=-1; c_e=-2; c_p=NULL;
297  }
298  else
299  { // nothing found
300  return 0;
301  }
302  }
303  // first try usal division
304  if (p_LmDivisibleBy(strat->S[j],(*h).p,currRing))
305  {
306 #ifdef KDEBUG
307  if(TEST_OPT_DEBUG)
308  {
309  p_wrp(h->p,currRing); Print(" divisible by S[%d]=",j);
310  p_wrp(strat->S[j],currRing); PrintS(" e=-1\n");
311  }
312 #endif
313  if ((c_j<0)||(c_e>=0))
314  {
315  c_e=-1; c_j=j;
316  }
317  }
318  else
319  if (p_LmDivisibleByPart(strat->S[j],(*h).p,currRing,
320  currRing->real_var_start,currRing->real_var_end))
321  {
322  int a_e=(p_Totaldegree(strat->S[j],currRing)-currRing->pFDeg(strat->S[j],currRing));
323 #ifdef KDEBUG
324  if(TEST_OPT_DEBUG)
325  {
326  p_wrp(h->p,currRing); Print(" divisibly by S[%d]=",j);
327  p_wrp(strat->S[j],currRing); Print(" e=%d\n",a_e);
328  }
329 #endif
330  if ((c_j<0)||(c_e>a_e))
331  {
332  c_e=a_e; c_j=j;
333  //c_p = nc_CreateSpoly(pCopy(strat->S[c_j]),pCopy((*h).p), currRing);
334  }
335  /*computes the ecart*/
336  if ((strat->syzComp!=0) && !strat->honey)
337  {
338  if ((strat->syzComp>0) && (pMinComp((*h).p) > strat->syzComp))
339  {
340 #ifdef KDEBUG
341  if (TEST_OPT_DEBUG) PrintS(" > sysComp\n");
342 #endif
343  return 0;
344  }
345  }
346  }
347  else
348  {
349 #ifdef KDEBUG
350  if(TEST_OPT_DEBUG)
351  {
352  p_wrp(h->p,currRing); Print(" not divisibly by S[%d]=",j);
353  p_wrp(strat->S[j],currRing); PrintLn();
354  }
355 #endif
356  }
357  j++;
358  }
359 }
void ratGB_divide_out(poly p)
Definition: gr_kstd2.cc:170
static BOOLEAN p_LmDivisibleBy(poly a, poly b, const ring r)
Definition: p_polys.h:1863
static BOOLEAN p_LmDivisibleByPart(poly a, poly b, const ring r, const int start, const int end)
Definition: p_polys.h:1828
static long p_Totaldegree(poly p, const ring r)
Definition: p_polys.h:1467
poly nc_rat_ReduceSpolyNew(const poly p1, poly p2, int ishift, const ring r)
Definition: ratgring.cc:465